Algebra: A Computational Introduction

This text is an introduction to algebra for undergraduates who are interested in careers which require a strong background in mathematics.

**Tag(s):**
Algebra
Linear Algebra

**Publication date**: 31 Dec 2009

**ISBN-10**:
n/a

**ISBN-13**:
n/a

**Paperback**:
419 pages

**Views**: 10,352

**Type**: Textbook

**Publisher**:
n/a

**License**:
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Generic

**Post time**: 06 Mar 2021 12:00:00

Algebra: A Computational Introduction

This text is an introduction to algebra for undergraduates who are interested in careers which require a strong background in mathematics.

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Click**here** to read the full license.

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Click

From the Preface:

John Scherk wrote:

John Scherk wrote:

This text is an introduction to algebra for undergraduates who are interested in careers which require a strong background in mathematics. It will benefit students studying computer science and physical sciences, who plan to teach mathematics in schools, or to work in industry or finance. The book assumes that the reader has a solid background in linear algebra. For the first 12 chapters elementary operations, elementary matrices, linear independence and rank are important. In the second half of the book abstract vector spaces are used. Students will need to have experience proving results. Some acquaintance with Euclidean geometry is also desirable. In fact I have found that a course in Euclidean geometry fits together very well with the algebra in the first 12 chapters. But one can avoid the geometry in the book by simply omitting chapter 7 and the geometric parts of chapters 9 and 18.

The material in the book is organized linearly. There are few excursions away from the main path. The only significant parts which can be omitted are those just mentioned, the section in chapter 12 on P SL(2, Fp), chapter 13 on abelian groups and the section in chapter 14 on Berlekamp's algorithm.

Tweet

About The Author(s)

Book Categories

Computer Science
Introduction to Computer Science
Introduction to Computer Programming
Algorithms and Data Structures
Artificial Intelligence
Computer Vision
Machine Learning
Neural Networks
Game Development and Multimedia
Data Communication and Networks
Coding Theory
Computer Security
Information Security
Cryptography
Information Theory
Computer Organization and Architecture
Operating Systems
Image Processing
Parallel Computing
Concurrent Programming
Relational Database
Document-oriented Database
Data Mining
Big Data
Data Science
Digital Libraries
Compiler Design and Construction
Functional Programming
Logic Programming
Object Oriented Programming
Formal Methods
Software Engineering
Agile Software Development
Information Systems
Geographic Information System (GIS)

Mathematics
Mathematics
Algebra
Abstract Algebra
Linear Algebra
Number Theory
Numerical Methods
Precalculus
Calculus
Differential Equations
Category Theory
Proofs
Discrete Mathematics
Theory of Computation
Graph Theory
Real Analysis
Complex Analysis
Probability
Statistics
Game Theory
Queueing Theory
Operations Research
Computer Aided Mathematics

Supporting Fields
Web Design and Development
Mobile App Design and Development
System Administration
Cloud Computing
Electric Circuits
Embedded System
Signal Processing
Integration and Automation
Network Science
Project Management

Operating System
Programming/Scripting
Ada
Assembly
C / C++
Common Lisp
Forth
Java
JavaScript
Lua
Microsoft .NET
Rexx
Perl
PHP
Python
R
Rebol
Ruby
Scheme
Tcl/Tk

Miscellaneous
Sponsors