
The SELinux Notebook - Sample Policy Source

The SELinux
Notebook

Volume 2
Sample Policy

Source
(2nd Edition)

Page 1

The SELinux Notebook - Sample Policy Source

0. Notebook Information

0.1 Copyright Information
Copyright © 2010 Richard Haines.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts.

A copy of the license is included in the section entitled “GNUFree Documentation
License”.

The scripts and source code in this Notebook are covered by the GNU General Public
License. The scripts and code are free source: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or any later version.

These are distributed in the hope that they will be useful in researching SELinux, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
scripts and source code. If not, see <http://www.gnu.org/licenses/>.

0.2 Revision History
Edition Date Changes

1.0 20th Nov ‘09 First released.

2.0 9th May '10 Split the Notebook into two volumes:

1. The Foundations - covers SELinux and its
supporting services.

2. Sample Policy Source - contains sample
application and policy source code to build a
simple message filter and experiment with X-
Windows.

In this volume:

• Updated all relevant sections to reflect Fedora 12
release and correct errors.

• Modified sample policies to work with F-12 (signal
handling changed).

• Added sections on: Experimenting with X-
Windows polyinstantiation copy & paste code and
policy; A test module for XSELinux functions.

Page 2

mailto:richard_c_haines@btinternet.com
http://www.gnu.org/licenses/

The SELinux Notebook - Sample Policy Source

0.3 Acknowledgements
Logo designed by Máirín Duffy

0.4 Abbreviations
Term Definition
apol Policy analysis tool
AV Access Vector
AVC Access Vector Cache
F-12 Fedora 12
MAC Mandatory Access Control
OM Object Manager
RBAC Role-based Access Control
SELinux Security-Enhanced Linux
SID Security Identifier
SL Security Level
TE Type Enforcement
UID User Identifier
XACE X (windows) Access Control Extension

0.5 Index
0. NOTEBOOK INFORMATION .. 2

0.1 COPYRIGHT INFORMATION .. 2
0.2 REVISION HISTORY ... 2
0.3 ACKNOWLEDGEMENTS .. 3
0.4 ABBREVIATIONS .. 3
0.5 INDEX ... 3

1. THE SELINUX NOTEBOOK .. 6
1.1 INTRODUCTION .. 6
1.2 VOLUME 1 - THE FOUNDATIONS OVERVIEW ... 6
1.3 VOLUME 2 - SAMPLE POLICY SOURCE OVERVIEW ... 7

1.3.1 Sample Policy Source Sections ... 7
1.4 RELEVANT F-12 PACKAGES ... 8

2. BUILDING A BASIC POLICY .. 9
2.1 INTRODUCTION .. 9

2.1.1 Overall Objectives .. 9
2.1.2 Build Requirements ... 9
2.1.3 The Test Policies ... 10

2.2 BUILDING THE POLICY SOURCE FILES ... 10
2.2.1 Policy Source Files ... 13

2.2.1.1 Problem Resolution .. 14
2.2.1.2 Monolithic and Base Policy Source File .. 14

Page 3

http://pookstar.deviantart.com/

The SELinux Notebook - Sample Policy Source

2.2.1.3 file_contexts File .. 20
2.2.1.4 default_contexts File .. 20
2.2.1.5 seusers File .. 20
2.2.1.6 dbus_contexts File ... 20
2.2.1.7 x_contexts File ... 21

2.3 BUILDING THE MONOLITHIC POLICY .. 21
2.3.1 Checking the Build .. 23

2.4 BUILDING THE BASE POLICY MODULE ... 24
2.4.1 Checking the Base Policy Build .. 26

3. BUILDING THE MESSAGE FILTER LOADABLE MODULES 27
3.1 OVERVIEW OF MODULES ... 27
3.2 BUILDING THE SECMARK TEST LOADABLE MODULE .. 28

3.2.1 Testing the Module .. 42
3.2.1.1 Running the Tests ... 43

3.2.2 Points to Note .. 46
3.2.2.1 Importance of Loading the iptables ... 46
3.2.2.2 Running tests out of sequence .. 46

3.3 BUILDING THE NETLABEL LOADABLE MODULE .. 47
3.4 BUILDING THE REMAINING MESSAGE FILTER SERVICE ... 49

3.4.1 Internal Gateway Loadable Policy Module .. 49
3.4.2 File Move Application ... 52
3.4.3 File Mover Loadable Policy Module .. 55
3.4.4 Testing the Message Filter Build .. 58

4. EXPERIMENTING WITH X-WINDOWS ... 61
4.1 SECTION OVERVIEW .. 61
4.2 OVERVIEW OF MODULES AND APPLICATIONS .. 61

4.2.1 The x_contexts Files and Supporting Loadable Module 61
4.2.2 The Select - Paste Applications and Loadable Module 63

4.2.2.1 Test Conclusions .. 65
4.2.2.2 Calling the XSELinux Functions ... 67

4.3 BUILDING THE X-WINDOWS SELECT AND PASTE EXAMPLES ... 67
4.3.1 Building the x_contexts Files and Loadable Module 68
4.3.2 Building the X-select and X-paste Applications .. 79
4.3.3 Building the X-select and X-paste Loadable Module 107
4.3.4 Testing Derived Labels ... 113

4.3.4.1 Derived Object Test Conclusions ... 116
4.3.5 Testing Polyinstantiated Labels .. 117

4.3.5.1 Polyinstantiated Object Test Conclusions .. 122
4.4 BUILDING THE XSELINUX FUNCTION TEST APPLICATION .. 122

5. APPENDIX A - POLICY INVESTIGATION TOOLS 131
5.1 INTRODUCTION .. 131
5.2 USING AUDIT2ALLOW AND AUDIT2WHY ... 131
5.3 USING SEAUDIT AND SETROUBLESHOOT .. 132
5.4 USING SEDIFFX .. 132
5.5 USING SECHECKER .. 134

5.5.1 Testing the Policy .. 134
5.5.2 The Results .. 136

Page 4

The SELinux Notebook - Sample Policy Source

5.6 USING APOL .. 145
5.6.1 General Information ... 145
5.6.2 Type Enforcement Rules ... 147
5.6.3 Direct Relabel ... 149

5.6.3.1 apol Direct Relabel Analysis .. 149
5.6.4 Transitive Information Flows ... 150

5.6.4.1 apol Transitive Information Flows Analysis 150

6. APPENDIX B – NETLABEL MODULE SUPPORT FOR
NETWORK_PEER_CONTROLS .. 153

6.1 INTRODUCTION .. 153
6.2 CONFIGURATION ... 153

7. APPENDIX C – LABELED IPSEC MODULE EXAMPLE 156
7.1 INTRODUCTION .. 156
7.2 MANUAL IPSEC CONFIGURATION ... 156
7.3 KEY EXCHANGE IPSEC CONFIGURATION ... 160

8. APPENDIX D – IMPLEMENTING A CONSTRAINT 163
8.1 INTRODUCTION .. 163
8.2 CONFIGURATION ... 163
8.3 REFERENCE POLICY CONSTRAINTS INFORMATION ... 164

9. APPENDIX E - GNU FREE DOCUMENTATION LICENSE 166

Page 5

The SELinux Notebook - Sample Policy Source

1. The SELinux Notebook

1.1 Introduction
This Notebook is split into two volumes:

1. The Foundations - that describes Security-Enhanced Linux (SELinux)
services as built into the Fedora 12 release1 of GNU / Linux.

2. Sample Policy Source - that contains sample policy and code to build a
simple policy to experiment with a message filter and with X-Windows
polyinstantiation.

These should help with explaining:

a) SELinux and its purpose in life.

b) The LSM / SELinux architecture, its supporting services and how they are
implemented within GNU / Linux.

c) The Virtual Machine, X-Windows, SE-PostgreSQL and Apache/SELinux-Plus
SELinux-aware capabilities.

d) The core SELinux policy language and how basic policy modules can be
constructed for instructional purposes.

e) The core SELinux policy management tools with examples of usage.

f) The Reference Policy architecture, its supporting services and how it is
implemented.

1.2 Volume 1 - The Foundations Overview
For reference Volume 1 - The Foundations has sections covering:

SELinux Overview - Gives a high level description of SELinux and its major
components to provide Mandatory Access Control services for GNU / Linux.
Hopefully it will show how all the SELinux components link together and how
SELinux-aware applications and their object managers have been implemented
(such as X-Windows, SE-PostgreSQL and virtual machines).

SELinux Configuration Files - Describes all the known SELinux configuration
files in F-12 with samples. Also lists any specific commands or libselinux
APIs used to manage them.

SELinux Policy Language - Gives a brief description of each policy language
statement, with supporting examples taken from the Reference Policy source.

The Reference Policy - Describes the Reference Policy and its supporting
macros.

Object Classes and Permissions - Describes the SELinux object classes and
permissions. These have been updated to reflect those in the 20091117 Reference
Policy build.

SELinux Commands - Describes each of the core SELinux commands.

1 This Notebook uses Fedora 12 simply because that is what is installed on the authors test system.

Page 6

The SELinux Notebook - Sample Policy Source

API Summary for libselinux - Contains a sorted alphabetical list of
libselinx library functions with comments extracted from the header files.

SE-PostgreSQL Database Example - Walks through setting up a simple
database with each object created having a unique security context to demonstrate
how they are implemented. Also shows the additional SE-PostgreSQL functions.

General Information - This section contains information about some minor
problems encountered and information that could be useful.

References - List of references used within this Notebook.

1.3 Volume 2 - Sample Policy Source Overview
This volume contains a number of sample policy source files that have been written
by the author to better understand SELinux. These do not use the Reference Policy
but are built using SELinux policy language statements to form a very simple
message filter that is then investigated using various SELinux tools. There are also
sample X-Windows applications to demonstrate the XSELinux object manager that is
now operational under F-12.

The Message Filter demonstrates:

• Building base and loadable policy modules.

• Using SECMARK, NetLabel and IPSec networking (via loop-back so no
additional systems are required).

The X-windows applications demonstrate:

• Building base and loadable policy modules.

• Adding additional entries in the x-contexts configuration file.

• Simple copy and paste applications to show the difference between standard
and polyinstantiated selections.

• Using the built-in XSELinux functions that Get/Set X-windows security
context information.

The source software is available, however it is possible to copy and paste the code
from the relevant sections of this Notebook into an editor such as gedit.

1.3.1 Sample Policy Source Sections
This volume has the following sections:

Building a Basic Policy - Describes how to build monolithic, base and loadable
policy modules using core policy language statements and SELinux commands.
Note that these policies should not to be used in a live environment, they are
examples to show simple policy construction.

Building the Message Filter Loadable Modules - Describes how to build a
simple network and file handling application with policy using SECMARK and
NetLabel services.

Page 7

The SELinux Notebook - Sample Policy Source

Experimenting with X-Windows - Builds sample copy and paste application and
policy to demonstrate polyinstantiated selections. Also has a simple test
application for the XSElinux extension Get/Set functions.

Policy Investigation Tools - Investigate the sample message filter application
policy using the Tresys SETools apol, sechecker and sediff.

NetLabel Module Support for network_peer_controls - This builds on
the modules developed in the Building the Message Filter section to implement an
enhanced module to support the network peer controls.

Labeled IPSec Module Example - This builds on the modules developed in the
Building the Message Filter section to implement Labeled IPSec.

Implementing a constraint - This builds on the modules developed in the
Building a Basic Policy section to show a simple constraint statement and its
impact on the policy.

1.4 Relevant F-12 Packages
The following are the relevant rpm packages installed on the test machine and used
for all examples:

checkpolicy-2.0.19-3.fc12.i686

ipsec-tools-0.7.3-4.fc12.i686

kernel-2.6.31.5-127.fc12.i686

libselinux-2.0.90-5.fc12.i686

libsemanage-2.0.45-1.fc12.i686

libsepol-2.0.41-3.fc12.i686

netlabel_tools-0.19-3.fc12.i686

policycoreutils-2.0.79-1.fc12.i686
policycoreutils-gui-2.0.79-1.fc12.i686
policycoreutils-sandbox-2.0.79-1.fc12.i686
policycoreutils-python-2.0.79-1.fc12.i686
policycoreutils-newrole-2.0.79-1.fc12.i686

setools-3.3.6-4.fc12.i686
setools-console-3.3.6-4.fc12.i686
setools-gui-3.3.6-4.fc12.i686
setools-libs-3.3.6-4.fc12.i686
setools-libs-java-3.3.6-4.fc12.i686
setools-libs-tcl-3.3.6-4.fc12.i686

The gcc tools will be required to compile and link the test ‘C’ applications used in
some of the scenarios (gcc-4.4.2-20.i686 and libgcc-4.4.2-20.i686
rpms are installed on the test machine that is using the kernel-2.6.31.5-
127.fc12.i686 rpm).

Page 8

The SELinux Notebook - Sample Policy Source

2. Building a Basic Policy

2.1 Introduction
The objective of this section is to show how policy files are constructed, compiled and
loaded using the SELinux command line tools and editors such as vi or gedit to
produce a usable policy for instructional use only.

A monolithic and modular (with loadable modules) policy are built without the use of
any support macros or make files from the Reference Policy source.

Important Note: While these are simple policies, they are built to support X-Windows
therefore an x_contexts file must be installed. This file is required by the X-
Windows SELinux object manager.

It is recommended that the notebook-source-1.1.0-1.tar.gz file is
installed in $HOME as this contains all the configuration files and source code
required to produce the required modules. It also contains README and a simple
Makefile for each section.

2.1.1 Overall Objectives
The main objectives of the sections that follow are to:

1. Show how to construct and build a simple monolithic and base policy.

2. Show how to construct and build a series of loadable modules for use with the
base module. This builds into a very simple message filter using a network
client / server application and file moving (filter) application. To examine the
message filter application policy, some very minor policy errors have been
introduced into the modules that will then be investigated using the SETools
package in Appendix A - Policy Investigation Tools.

3. Demonstrate simple X-windows select and paste applications using
customised x_contexts files to show the different between standard (as
used by the Reference Policy) and polyinstantiation selections using the
XSELinux object manager / XACE services.

4. Build a test application that allows the XSELinux SELinuxGet.. and
SELinuxSet.. functions to be tested.

2.1.2 Build Requirements
To be able to build the policy files only standard SELinux utilities are required.
However to build the test ‘C’ programs development tools will be required, therefore
ensure that the following are installed:

• gcc tools to compile and link the test applications (gcc and libgcc
packages).

• The libselinux library and libselinux-devel packages.

• For the X-Windows examples the the following will also be required:

Page 9

The SELinux Notebook - Sample Policy Source

• The Xlibpackages libX11, libX11-common and libX11-
devel.

• For retrieving Xdevice information libXi and libXi-devel.

If the NetLabel module is being built, the NetLabel tools will need to be installed as
they are not part of the standard F-12 installation (netlabel_tools).

If the Tresys utilities are used (apol, sechecker etc.), then it is recommended that the
policies are built uncompressed by adding the following entry in the
semanage.conf file:
 bzip-blocksize=0

2.1.3 The Test Policies
Normally SELinux policies are built to deny everything by default, and then enable
access as required, however the example policies in this section grant access to
everything and then run the test applications in their own domains to isolate them.

The policies built in this section have been tested using the follow sequence:

1. Will the system load, allow users to logon and run applications in permissive
mode – If yes then:

2. Set the system to enforcing mode by setenforce 1, if still okay then:

3. Log out users and log in again (as now in enforcing mode, the login may fail),
if okay then:

4. Edit the config file and set SELINUX=enforcing, then reboot the
system, if okay then:

5. Log in users and run applications, if okay then:

6. Test that the policy meets the security requirements.

If at any stage the load fails, then the repair CD/DVD may have to be used to
investigate the cause. Setting the config file SELINUX entry to permissive and
investigating the messages and audit logs can be helpful (but not always).

2.2 Building The Policy Source Files
There are at least three ways to build a monolithic or base policy source file to
experiment with:

1. Use the samples shown in this section that are valid for F-12. However as
SELinux gets updated, the object classes and their associated permissions do
change, therefore these samples may not be correct for other versions or
distributions.

2. Rebuild the source files using the flask security_classes,
initial_sids and access_vectors files from the Reference Policy
source appropriate to the GNU / Linux distribution being used. The policy
statements must then be added as necessary.

Page 10

The SELinux Notebook - Sample Policy Source

The buildpolicy script shown below can be used to produce the complete
policy automatically from the Reference Policy source2 using the flask
security_classes, initial_sids and access_vectors files.

#!/bin/sh
#
###
#
This script will build an SELinux monolithic or base policy file suitable
for building test policy for use in the SELinux Notebook. The Reference
Policy must be available for this script to build the policy.
#
A full description of its use is in the SELinux Notebook
#
Copyright (C) 2010 Richard Haines
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###
#

usage(){
echo "Command format is: ./buildpolicy <policy_name>

<ref_policy_root_dir>"
echo "Examples:"
echo "buildpolicy base.conf ."
echo "Or:"
echo "./buildpolicy policy.conf $HOME/rpmbuild/SOURCES/serefpolicy-3.5.13"
exit 1

}

if test "$1" = ""
then echo "Need policy file name"

usage
fi

if test ! -f "$2/policy/flask/security_classes"
then echo "Not a valid Reference Policy source tree"

usage
fi

echo -e "#\\n# ****** WARNING - THIS POLICY MUST NOT BE USED IN LIVE
**************\\n# ******************* IT IS FOR TESTING ONLY
*************************\\n#" > $1

echo -e "##################### START OF POLICY BUILD
#######################\\n#" >> $1

echo -e "#\\n#################### Start of FLASK Entries
#######################\\n#" >> $1
echo -e "#\\n# ./policy/flask/security_classes file entries\\n#" >> $1
cat "$2/policy/flask/security_classes" >> $1

echo -e "#\\n# ./policy/flask/initial_sids file entries\\n#" >> $1
cat "$2/policy/flask/initial_sids" >> $1

echo -e "#\\n# ./policy/flask/access_vectors file entries\\n#" >> $1
cat "$2/policy/flask/access_vectors" >> $1

echo -e "\\n#\\n###################### End of FLASK Entries
#######################\\n#\\n" >> $1

2 The X-Windows to work the minimum reference policy build is 20091117.

Page 11

The SELinux Notebook - Sample Policy Source

echo -e "#\\n# This policycap statement will be used in a netlabel module
exercise\\n# to show network_peer_controls. For now comment out:\\n#
policycap network_peer_controls;\\n" >> $1

echo -e "# The only type defined for this policy:" >> $1
echo -e "type unconfined_t;\\n " >> $1

echo -e "# The only role defined for this policy:" >> $1
echo -e "role unconfined_r types { unconfined_t };\\n" >> $1

echo -e "#\\n# These allow rules enable all of the objects to access all of
their\\n# permissions. This effectively gives access to everything.\\n#" >>
$1
awk '$1 == "class" {print "allow unconfined_t self:"$2 " *;"}'
"$2/policy/flask/security_classes" >> $1

echo -e "\\n# The only real SELinux user defined for this policy:" >> $1
echo -e "user user_u roles { unconfined_r };\\n" >> $1

echo -e "#\\n# The system_u user is defined so that objects can be labeled
with" >> $1
echo -e "# system_u:object_r as in standard policies, also so that semanage
can add" >> $1
echo -e "# ports etc. as it requires a system_u user for adding these type of
objects." >> $1
echo -e "user system_u roles { unconfined_r };\\n" >> $1

echo -e "#\\n# This role constraint statement will be used to show
limiting\\n# a role transition in the external gateway. For now comment
out:\\n# constrain process transition (r1 == r2);\\n" >> $1

echo -e "#\\n# These are the default labeling operations for these
objects.\\n# Note that the kernel entry is unconfined_r not object_r\\n#" >>
$1
awk '$1 == "sid" {if ($2 == "kernel") print $1 " " $2 "
system_u:unconfined_r:unconfined_t"}' "$2/policy/flask/initial_sids" >> $1
awk '$1 == "sid" {if ($2 != "kernel") print $1 " " $2 "
system_u:object_r:unconfined_t"}' "$2/policy/flask/initial_sids" >> $1

echo -e "\\n#\\n# These are the default file labeling routines.\\n#" >> $1
echo "fs_use_xattr ext3 system_u:object_r:unconfined_t;" >> $1
echo "fs_use_xattr ext4 system_u:object_r:unconfined_t;" >> $1

echo "fs_use_task eventpollfs system_u:object_r:unconfined_t;" >> $1
echo "fs_use_task pipefs system_u:object_r:unconfined_t;" >> $1
echo "fs_use_task sockfs system_u:object_r:unconfined_t;" >> $1

echo "fs_use_trans mqueue system_u:object_r:unconfined_t;" >> $1
echo "fs_use_trans shm system_u:object_r:unconfined_t;" >> $1
echo "fs_use_trans tmpfs system_u:object_r:unconfined_t;" >> $1
echo "fs_use_trans devpts system_u:object_r:unconfined_t;" >> $1

echo "genfscon proc / system_u:object_r:unconfined_t" >> $1
echo "genfscon sysfs / system_u:object_r:unconfined_t" >> $1
echo "genfscon selinuxfs / system_u:object_r:unconfined_t" >> $1
echo "genfscon securityfs / system_u:object_r:unconfined_t" >> $1

echo -e "\\n#\\n################## END OF POLICY BUILD
######################\\n#\\n" >> $1

3. There is an article “SELinux From Scratch” [Ref. 15] that describes a process
using a C program and some scripts for building a test policy from the GNU /
Linux kernel source tree. This process has since been enhanced and built into
the kernel source tree from version 2.6.28, where the following files can be
found that describe and build the ‘make dummy policy’(mdp):

Documentation/SELinux.txt
scripts/Makefile
scripts/selinux/Makefile

Page 12

http://www.ibm.com/developerworks/linux/library/l-selinux.html?S_TACT=105AGX03&S_CMP=ART

The SELinux Notebook - Sample Policy Source

scripts/selinux/README
scripts/selinux/install_policy.sh
scripts/selinux/mdp/Makefile
scripts/selinux/mdp/dbus_contexts
scripts/selinux/mdp/mdp.c

2.2.1 Policy Source Files
The policies built in this section make use of a common policy.conf source file
to demonstrate a monolithic build and a base loadable policy build (traditionally
called base.conf). The source is shown in the Policy Source File section with
Table 2-1 describing the core policy components.

Entry Comments
Security Classes (class) These are from the Reference Policy (build

20091117) files as they have the correct X-Windows
classes:
./policy/flask/security_classes
./policy/flask/access_vectors
./policy/flask/initial_sids

Access Vectors
(permissions)
Initial SIDs

MLS Sensitivity, category
and level Statements

There are no MLS security level information in the
sample policy.

MLS Constraints There are no MLS constraints in the sample policy.
Policy Capability
Statements

There are no policycap statements in the sample
policy, however one is added later for a NetLabel
exercise using network_peer_controls.

Attributes There are no attributes in the sample policy.
Booleans There are no bool statements in the sample policy.
Type / Type Alias There is only one type: unconfined_t. There are

no typealias statements.
Roles There is only one role: unconfined_r.
Policy Rules There is one allow rule for each object class (taken

from the security_classes file) in the policy that
allows unrestricted access to all its permissions as
follows:

allow unconfined_t self : class_name *;
Users There is one user: user_u, for logging on. The

system_u user is there to allow objects to be
labeled system_u:object_r as in the standard
Reference Policy. The system_u user is also
required by semanage(8) to add network objects.

Constraints These are no constraints in the sample policy,
however one is added later to show role constraints.

Page 13

The SELinux Notebook - Sample Policy Source

Entry Comments
Default SID labeling These have been taken from the standard Reference

Policy build with the security contexts updated. Note
that the kernel is labeled unconfined_r and not
object_r.

fs_use_xattr Statement Only the ext3 and ext4 filesystems have been
added. If the system being built supports other
filesystems then these will need to be added.

fs_use_task and
fs_use_trans
Statements

These have been taken from the standard Reference
Policy build.

genfscon Statements Only a selection have been taken from the standard
Reference Policy build.

portcon, netifcon and
nodecon Statements

There are none of these statements in the policy.

Table 2-1: Policy Components - for the policy.conf and base.conf source
file.

2.2.1.1 Problem Resolution

The following may help with resolving issues when building the examples:

1. If the files are cut from this document and then pasted into a GNU / Linux
editor (such as vi or gedit) as a text file, then there could be a cr at the end
of each line. This can cause problems with some compliers such as
checkpolicy and checkmodule. To remove the cr use the following
command:

cat <file_name> | tr –d \\r >new_file_name

2. Once the policies etc. have been built and all goes well, the filesystem will
relabeled and the new policy loaded during the reboot process, however any
errors encountered will probably result in either:

a. GNU / Linux hanging, in which case the repair disk will be required.
To allow GNU / Linux to load, the /etc/selinux/config file
should be edited to set either SELINUX=disabled or the
SELINUXTYPE= to a known working policy. The reason for the hang
can then be investigated (such as correcting the policy source files
and/or re-running the build commands).

b. The policy will be rejected by the kernel and not loaded, GNU / Linux
will then load with no policy enabled, giving another chance at fixing
the problem (the screen messages will generally give the reason for the
rejection).

2.2.1.2 Monolithic and Base Policy Source File

The policy source file for monolithic and base loadable module is as follows:

Page 14

The SELinux Notebook - Sample Policy Source

#
****** WARNING - THIS POLICY MUST NOT BE USED IN LIVE **************
******************* IT IS FOR TESTING ONLY *************************
#
##################### START OF POLICY BUILD #######################
#
#
#################### Start of FLASK Entries #######################
#
#
./policy/flask/security_classes file entries
#
FLASK
class security
class process
class system
class capability
class filesystem
class file
class dir
class fd
class lnk_file
class chr_file
class blk_file
class sock_file
class fifo_file
class socket
class tcp_socket
class udp_socket
class rawip_socket
class node
class netif
class netlink_socket
class packet_socket
class key_socket
class unix_stream_socket
class unix_dgram_socket
class sem
class msg
class msgq
class shm
class ipc
class passwd # userspace
class x_drawable # userspace
class x_screen # userspace
class x_gc # userspace
class x_font # userspace
class x_colormap # userspace
class x_property # userspace
class x_selection # userspace
class x_cursor # userspace
class x_client # userspace
class x_device # userspace
class x_server # userspace
class x_extension # userspace
class netlink_route_socket
class netlink_firewall_socket
class netlink_tcpdiag_socket
class netlink_nflog_socket
class netlink_xfrm_socket
class netlink_selinux_socket
class netlink_audit_socket
class netlink_ip6fw_socket
class netlink_dnrt_socket
class dbus # userspace
class nscd # userspace
class association
class netlink_kobject_uevent_socket
class appletalk_socket
class packet
class key
class context # userspace
class dccp_socket
class memprotect
class db_database # userspace

Page 15

The SELinux Notebook - Sample Policy Source

class db_table # userspace
class db_procedure # userspace
class db_column # userspace
class db_tuple # userspace
class db_blob # userspace
class peer
class capability2
class x_resource # userspace
class x_event # userspace
class x_synthetic_event # userspace
class x_application_data # userspace
class kernel_service
class tun_socket
class x_pointer # userspace
class x_keyboard # userspace
#
./policy/flask/initial_sids file entries
#
sid kernel
sid security
sid unlabeled
sid fs
sid file
sid file_labels
sid init
sid any_socket
sid port
sid netif
sid netmsg
sid node
sid igmp_packet
sid icmp_socket
sid tcp_socket
sid sysctl_modprobe
sid sysctl
sid sysctl_fs
sid sysctl_kernel
sid sysctl_net
sid sysctl_net_unix
sid sysctl_vm
sid sysctl_dev
sid kmod
sid policy
sid scmp_packet
sid devnull
#
./policy/flask/access_vectors file entries
#
common file { ioctl read write create getattr setattr lock relabelfrom relabelto
append unlink link rename execute swapon quotaon mounton }
common socket { ioctl read write create getattr setattr lock relabelfrom
relabelto append bind connect listen accept getopt setopt shutdown recvfrom
sendto recv_msg send_msg name_bind }
common ipc { create destroy getattr setattr read write associate unix_read
unix_write }
common database { create drop getattr setattr relabelfrom relabelto }
common x_device { getattr setattr use read write getfocus setfocus bell
force_cursor freeze grab manage list_property get_property set_property add
remove create destroy }
Define the access vectors.
class filesystem { mount remount unmount getattr relabelfrom relabelto
transition associate quotamod quotaget }
class dir inherits file { add_name remove_name reparent search rmdir open }
class file inherits file { execute_no_trans entrypoint execmod open }
class lnk_file inherits file
class chr_file inherits file { execute_no_trans entrypoint execmod open }
class blk_file inherits file { open }
class sock_file inherits file { open }
class fifo_file inherits file { open }
class fd { use }
class socket inherits socket
class tcp_socket inherits socket { connectto newconn acceptfrom node_bind
name_connect }
class udp_socket inherits socket { node_bind }
class rawip_socket inherits socket { node_bind }

Page 16

The SELinux Notebook - Sample Policy Source

class node { tcp_recv tcp_send udp_recv udp_send rawip_recv rawip_send
enforce_dest dccp_recv dccp_send recvfrom sendto }
class netif { tcp_recv tcp_send udp_recv udp_send rawip_recv rawip_send
dccp_recv dccp_send ingress egress }
class netlink_socket inherits socket
class packet_socket inherits socket
class key_socket inherits socket
class unix_stream_socket inherits socket { connectto newconn acceptfrom }
class unix_dgram_socket inherits socket
class process { fork transition sigchld sigkill sigstop signull signal ptrace
getsched setsched getsession getpgid setpgid getcap setcap share getattr setexec
setfscreate noatsecure siginh setrlimit rlimitinh dyntransition setcurrent
execmem execstack execheap setkeycreate setsockcreate }
class ipc inherits ipc
class sem inherits ipc
class msgq inherits ipc { enqueue }
class msg { send receive }
class shm inherits ipc { lock }
class security { compute_av compute_create compute_member check_context
load_policy compute_relabel compute_user setenforce setbool setsecparam
setcheckreqprot }
class system { ipc_info syslog_read syslog_mod syslog_console module_request }
class capability { chown dac_override dac_read_search fowner fsetid kill setgid
setuid setpcap linux_immutable net_bind_service net_broadcast net_admin net_raw
ipc_lock ipc_owner sys_module sys_rawio sys_chroot sys_ptrace sys_pacct
sys_admin sys_boot sys_nice sys_resource sys_time sys_tty_config mknod lease
audit_write audit_control setfcap }
class capability2 { mac_override mac_admin }
class passwd { passwd chfn chsh rootok crontab }
class x_drawable { create destroy read write blend getattr setattr list_child
add_child remove_child list_property get_property set_property manage override
show hide send receive }
class x_screen { getattr setattr hide_cursor show_cursor saver_getattr
saver_setattr saver_hide saver_show }
class x_gc { create destroy getattr setattr use }
class x_font { create destroy getattr add_glyph remove_glyph use }
class x_colormap { create destroy read write getattr add_color remove_color
install uninstall use }
class x_property { create destroy read write append getattr setattr }
class x_selection { read write getattr setattr }
class x_cursor { create destroy read write getattr setattr use }
class x_client { destroy getattr setattr manage }
class x_device inherits x_device
class x_server { getattr setattr record debug grab manage }
class x_extension { query use }
class x_resource { read write }
class x_event { send receive }
class x_synthetic_event { send receive }
class netlink_route_socket inherits socket { nlmsg_read nlmsg_write }
class netlink_firewall_socket inherits socket { nlmsg_read nlmsg_write }
class netlink_tcpdiag_socket inherits socket { nlmsg_read nlmsg_write }
class netlink_nflog_socket inherits socket
class netlink_xfrm_socket inherits socket { nlmsg_read nlmsg_write }
class netlink_selinux_socket inherits socket
class netlink_audit_socket inherits socket { nlmsg_read nlmsg_write nlmsg_relay
nlmsg_readpriv nlmsg_tty_audit }
class netlink_ip6fw_socket inherits socket { nlmsg_read nlmsg_write }
class netlink_dnrt_socket inherits socket
class dbus { acquire_svc send_msg }
class nscd { getpwd getgrp gethost getstat admin shmempwd shmemgrp shmemhost
getserv shmemserv }
class association { sendto recvfrom setcontext polmatch }
class netlink_kobject_uevent_socket inherits socket
class appletalk_socket inherits socket
class packet { send recv relabelto flow_in flow_out forward_in forward_out }
class key { view read write search link setattr create }
class context { translate contains }
class dccp_socket inherits socket { node_bind name_connect }
class memprotect { mmap_zero }
class db_database inherits database { access install_module load_module
get_param set_param }
class db_table inherits database { use select update insert delete lock }
class db_procedure inherits database { execute entrypoint install }
class db_column inherits database { use select update insert }
class db_tuple { relabelfrom relabelto use select update insert delete }

Page 17

The SELinux Notebook - Sample Policy Source

class db_blob inherits database { read write import export }
class peer { recv }
class x_application_data { paste paste_after_confirm copy }
class kernel_service { use_as_override create_files_as }
class tun_socket inherits socket
class x_pointer inherits x_device
class x_keyboard inherits x_device
#
###################### End of FLASK Entries #######################
#

#
This policycap statement will be used in a netlabel module exercise
to show network_peer_controls. For now comment out:
policycap network_peer_controls;

The only type defined for this policy:
type unconfined_t;

The only role defined for this policy:
role unconfined_r types { unconfined_t };

#
These allow rules enable all of the objects to access all of their
permissions. This effectively gives access to everything.
#
allow unconfined_t self:security *;
allow unconfined_t self:process *;
allow unconfined_t self:system *;
allow unconfined_t self:capability *;
allow unconfined_t self:filesystem *;
allow unconfined_t self:file *;
allow unconfined_t self:dir *;
allow unconfined_t self:fd *;
allow unconfined_t self:lnk_file *;
allow unconfined_t self:chr_file *;
allow unconfined_t self:blk_file *;
allow unconfined_t self:sock_file *;
allow unconfined_t self:fifo_file *;
allow unconfined_t self:socket *;
allow unconfined_t self:tcp_socket *;
allow unconfined_t self:udp_socket *;
allow unconfined_t self:rawip_socket *;
allow unconfined_t self:node *;
allow unconfined_t self:netif *;
allow unconfined_t self:netlink_socket *;
allow unconfined_t self:packet_socket *;
allow unconfined_t self:key_socket *;
allow unconfined_t self:unix_stream_socket *;
allow unconfined_t self:unix_dgram_socket *;
allow unconfined_t self:sem *;
allow unconfined_t self:msg *;
allow unconfined_t self:msgq *;
allow unconfined_t self:shm *;
allow unconfined_t self:ipc *;
allow unconfined_t self:passwd *;
allow unconfined_t self:x_drawable *;
allow unconfined_t self:x_screen *;
allow unconfined_t self:x_gc *;
allow unconfined_t self:x_font *;
allow unconfined_t self:x_colormap *;
allow unconfined_t self:x_property *;
allow unconfined_t self:x_selection *;
allow unconfined_t self:x_cursor *;
allow unconfined_t self:x_client *;
allow unconfined_t self:x_device *;
allow unconfined_t self:x_server *;
allow unconfined_t self:x_extension *;
allow unconfined_t self:netlink_route_socket *;
allow unconfined_t self:netlink_firewall_socket *;
allow unconfined_t self:netlink_tcpdiag_socket *;
allow unconfined_t self:netlink_nflog_socket *;
allow unconfined_t self:netlink_xfrm_socket *;
allow unconfined_t self:netlink_selinux_socket *;
allow unconfined_t self:netlink_audit_socket *;

Page 18

The SELinux Notebook - Sample Policy Source

allow unconfined_t self:netlink_ip6fw_socket *;
allow unconfined_t self:netlink_dnrt_socket *;
allow unconfined_t self:dbus *;
allow unconfined_t self:nscd *;
allow unconfined_t self:association *;
allow unconfined_t self:netlink_kobject_uevent_socket *;
allow unconfined_t self:appletalk_socket *;
allow unconfined_t self:packet *;
allow unconfined_t self:key *;
allow unconfined_t self:context *;
allow unconfined_t self:dccp_socket *;
allow unconfined_t self:memprotect *;
allow unconfined_t self:db_database *;
allow unconfined_t self:db_table *;
allow unconfined_t self:db_procedure *;
allow unconfined_t self:db_column *;
allow unconfined_t self:db_tuple *;
allow unconfined_t self:db_blob *;
allow unconfined_t self:peer *;
allow unconfined_t self:capability2 *;
allow unconfined_t self:x_resource *;
allow unconfined_t self:x_event *;
allow unconfined_t self:x_synthetic_event *;
allow unconfined_t self:x_application_data *;
allow unconfined_t self:kernel_service *;
allow unconfined_t self:tun_socket *;
allow unconfined_t self:x_pointer *;
allow unconfined_t self:x_keyboard *;

The only real SELinux user defined for this policy:
user user_u roles { unconfined_r };

#
The system_u user is defined so that objects can be labeled with
system_u:object_r as in standard policies, also so that semanage can add
ports etc. as it requires a system_u user for adding these type of objects.
user system_u roles { unconfined_r };

#
This role constraint statement will be used to show limiting
a role transition in the external gateway. For now comment out:
constrain process transition (r1 == r2);

#
These are the default labeling operations for these objects.
Note that the kernel entry is unconfined_r not object_r
#
sid kernel system_u:unconfined_r:unconfined_t
sid security system_u:object_r:unconfined_t
sid unlabeled system_u:object_r:unconfined_t
sid fs system_u:object_r:unconfined_t
sid file system_u:object_r:unconfined_t
sid file_labels system_u:object_r:unconfined_t
sid init system_u:object_r:unconfined_t
sid any_socket system_u:object_r:unconfined_t
sid port system_u:object_r:unconfined_t
sid netif system_u:object_r:unconfined_t
sid netmsg system_u:object_r:unconfined_t
sid node system_u:object_r:unconfined_t
sid igmp_packet system_u:object_r:unconfined_t
sid icmp_socket system_u:object_r:unconfined_t
sid tcp_socket system_u:object_r:unconfined_t
sid sysctl_modprobe system_u:object_r:unconfined_t
sid sysctl system_u:object_r:unconfined_t
sid sysctl_fs system_u:object_r:unconfined_t
sid sysctl_kernel system_u:object_r:unconfined_t
sid sysctl_net system_u:object_r:unconfined_t
sid sysctl_net_unix system_u:object_r:unconfined_t
sid sysctl_vm system_u:object_r:unconfined_t
sid sysctl_dev system_u:object_r:unconfined_t
sid kmod system_u:object_r:unconfined_t
sid policy system_u:object_r:unconfined_t
sid scmp_packet system_u:object_r:unconfined_t
sid devnull system_u:object_r:unconfined_t

Page 19

The SELinux Notebook - Sample Policy Source

#
These are the default file labeling routines.
#
fs_use_xattr ext3 system_u:object_r:unconfined_t;
fs_use_xattr ext4 system_u:object_r:unconfined_t;
fs_use_task eventpollfs system_u:object_r:unconfined_t;
fs_use_task pipefs system_u:object_r:unconfined_t;
fs_use_task sockfs system_u:object_r:unconfined_t;
fs_use_trans mqueue system_u:object_r:unconfined_t;
fs_use_trans shm system_u:object_r:unconfined_t;
fs_use_trans tmpfs system_u:object_r:unconfined_t;
fs_use_trans devpts system_u:object_r:unconfined_t;
genfscon proc / system_u:object_r:unconfined_t
genfscon sysfs / system_u:object_r:unconfined_t
genfscon selinuxfs / system_u:object_r:unconfined_t
genfscon securityfs / system_u:object_r:unconfined_t

#
################## END OF POLICY BUILD ######################
#

2.2.1.3 file_contexts File

The file_contexts file for the build is as follows:

/ system_u:object_r:unconfined_t
/.* system_u:object_r:unconfined_t

2.2.1.4 default_contexts File

The default_contexts file is to ensure that the initial logon process uses the
unconfined_r:unconfined_t role / type pair and is as follows:

unconfined_r:unconfined_t unconfined_r:unconfined_t

Note that this file will only be required when the additional loadable modules are built
as they contain multiple types associated to a single role (therefore the logon process
needs to know which of the types to use for the users user:role:type security
context).

2.2.1.5 seusers File

The seusers file is not mandatory, however one is added as all policies tend to have
one, also when adding additional users via semanage, one will be required.

system_u:system_u
user_u:user_u
__default__:user_u

2.2.1.6 dbus_contexts File

The dbus_contexts file is required to allow X-Windows to run and is as follows:

<!DOCTYPE busconfig PUBLIC "-//freedesktop//DTD D-BUS Bus Configuration 1.0//EN"
 "http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd">
<busconfig>
 <selinux>

Page 20

The SELinux Notebook - Sample Policy Source

 </selinux>
</busconfig>

2.2.1.7 x_contexts File

The x_contexts file is required to allow X-Windows to run and is as follows (this
is a modified version taken from Reference Policy 20091117):

client * system_u:object_r:unconfined_t
Rules for X Properties
property _SELINUX_* system_u:object_r:unconfined_t
property CUT_BUFFER? system_u:object_r:unconfined_t
property * system_u:object_r:unconfined_t
Rules for X Extensions
extension SELinux system_u:object_r:unconfined_t
extension * system_u:object_runconfined_t
Rules for X Selections
selection PRIMARY system_u:object_r:unconfined_t
selection CLIPBOARD system_u:object_r:unconfined_t
selection * system_u:object_r:unconfined_t
Rules for X Events
event X11:KeyPress system_u:object_r:unconfined_t
event X11:KeyRelease system_u:object_r:unconfined_t
event X11:ButtonPress system_u:object_r:unconfined_t
event X11:ButtonRelease system_u:object_r:unconfined_t
event X11:MotionNotify system_u:object_r:unconfined_t
event XInputExtension:DeviceKeyPress system_u:object_r:unconfined_t
event XInputExtension:DeviceKeyRelease system_u:object_r:unconfined_t
event XInputExtension:DeviceButtonPress system_u:object_r:unconfined_t
event XInputExtension:DeviceButtonRelease system_u:object_r:unconfined_t
event XInputExtension:DeviceMotionNotify system_u:object_r:unconfined_t
event XInputExtension:DeviceValuator system_u:object_r:unconfined_t
event XInputExtension:ProximityIn system_u:object_r:unconfined_t
event XInputExtension:ProximityOut system_u:object_r:unconfined_t
event X11:ClientMessage system_u:object_r:unconfined_t
event X11:SelectionNotify system_u:object_r:unconfined_t
event X11:UnmapNotify system_u:object_r:unconfined_t
event X11:ConfigureNotify system_u:object_r:unconfined_t
event * system_u:object_r:unconfined_t

2.3 Building the Monolithic Policy
The basic steps to produce a simple monolithic test policy are:

1) Ensure you are logged on as ‘root’ and SELinux is running in permissive
mode (setenforce 0) to perform the build process. It is assumed that the
files are built in the ./notebook-source/monolithic-policy
directory.

2) Produce a policy.conf file with a text editor (such as vi or edit)
containing the contents shown in the Policy Source File section.

3) Produce a file_contexts file with the contents shown in the
file_contexts file section. This will be used to relabel the file system.

4) Produce a dbus_contexts file with the contents shown in the
dbus_contexts file section. This is required for X-Windows to load as it
uses the dbus messaging service that has a SELinux user space object
manager.

Page 21

The SELinux Notebook - Sample Policy Source

5) Produce a x_contexts file with the contents shown in the x_contexts
File section. This is required for the X-Windows object manager.

6) Find the maximum policy version the SELinux kernel will support by
executing the following command:

cat /selinux/policyvers
24

The output for the F-12 kernel should be ‘24’ depending on any package
updates that have been added.

7) Compile the policy with checkpolicy to produce the binary policy file:

checkpolicy –c24 -o policy.24 policy.conf

The output from the compilation should be:

checkpolicy: loading policy configuration from policy.conf
checkpolicy: policy configuration loaded
checkpolicy: writing binary representation (version 24) to
policy.24

8) Make the following directories to store the policy:

mkdir /etc/selinux/monolithic-test/policy
mkdir –p /etc/selinux/monolithic-test/contexts/files

9) Copy the following files to SELinux policy area:

cp policy.24 /etc/selinux/monolithic-test/policy
cp seusers /etc/selinux/monolithic-test/seusers
cp dbus_contexts /etc/selinux/monolithic-test/contexts
cp x_contexts /etc/selinux/monolithic-test/contexts
cp default_contexts /etc/selinux/monolithic-test/contexts
cp file_contexts /etc/selinux/monolithic-
test/contexts/files

10) The file and directory list in the /etc/selinux/monolithic-test
directory area should now consist of the following:

monolithic-test:
drwxr-xr-x 3 root root 4096 2010-02-25 13:04 contexts
drwxr-xr-x 2 root root 4096 2010-02-25 13:59 policy
-rw-r--r-- 1 root root 51 2010-02-25 14:00 seusers

monolithic-test/contexts:
-rw-r--r-- 1 root root 195 2010-02-25 13:04 dbus_contexts
-rw-r--r-- 1 root root 53 2010-02-25 13:04 default_contexts
drwxr-xr-x 2 root root 4096 2010-02-25 14:00 files
-rw-r--r-- 1 root root 2764 2010-02-25 13:04 x_contexts

monolithic-test/contexts/files:
-rw-r--r-- 1 root root 69 2010-02-25 14:00 file_contexts

monolithic-test/policy:
-rw-r--r-- 1 root root 12457 2010-02-25 13:59 policy.24

Page 22

The SELinux Notebook - Sample Policy Source

11) Edit the /etc/selinux/config file and change the entries shown. This
will set permissive mode and the location of the policy that will be loaded on
the next re-boot. Note - do not put any spaces after these entries.

SELINUX=permissive
SELINUXTYPE=monolithic-test

12) To allow file system relabeling to be actioned on reboot execute the following
command:

touch /.autorelabel

13) Optionally clear the log files so that they are clear for easier reading after the
reboot:

> /var/log/messages
> /var/log/audit/audit.log

14) Reboot the system. During the boot process, the file system should be re-
labeled.

reboot

2.3.1 Checking the Build
Once the system has reloaded, SELinux will be running in ‘permissive’ mode. Logon
as root and use either seaudit, troubleshooter or simply tail in a couple
of ‘terminal windows’ to view the logs:

In one terminal window run:
tail -f /var/log/messages

In another terminal window run:
tail -f /var/log/audit/audit.log

There should be entries for the boot process in the /var/log/messages file,
however the /var/log/audit/audit.log file should only contain entries for
the audit daemon, user logon and role change for the logon process.

If the system is ‘working’ (i.e. it should be stable, load the desktop and allow utilities
to be loaded from the menus), then SELinux can be set to enforcing mode by:

setenforce 1

The new policy will be enforced and the only entries in the logs should be about
setting enforcing mode.

If the system is unstable when rebooted, then see the Problem Resolution section for a
possible resolution.

Page 23

The SELinux Notebook - Sample Policy Source

2.4 Building the Base Policy Module
This exercise will build the mandatory base policy module that uses the same policy
source file as the monolithic policy discussed above.

The basic steps to produce a simple base test policy are:

1. Ensure you are logged on as ‘root’ and SELinux is running in permissive
mode (setenforce 0) to perform the build process. It is assumed that the
files are built in the ./notebook-source/modular-base-policy
directory.

2. Produce a base.conf file with a text editor (such as vi or gedit)
containing the contents shown in the Policy Source File section.

3. Produce a base.fc file with the contents shown in the file_contexts
file section. This will be used to relabel the file system.

4. Produce a default_contexts file with the contents shown in the
default_contexts file section. This will be used to ensure that the
correct context is used for the logon process (only really needed when the
additional loadable modules are built).

5. Produce an seusers file with the contents shown in the seusers file
section.

6. Produce a dbus_contexts file with the contents shown in the
dbus_contexts file section. This is required for X-Windows to load as it
uses the dbus messaging service that has a SELinux user space object
manager.

15) Produce a x_contexts file with the contents shown in the x_contexts
File section. This is required for the X-Windows object manager.

7. Compile the policy with checkmodule to produce an intermediate binary
policy file:

checkmodule -o base.mod base.conf

The output from the compilation should be:

checkmodule: loading policy configuration from base.conf
checkmodule: policy configuration loaded
checkmodule: writing binary representation (version 10) to base.mod

8. Package the policy with semodule_package, this will produce a base
policy module file (note – if successful there are no output messages):

semodule_package -o base.pp -m base.mod -f base.fc –s
seusers

9. Make the following directories to store the policy:

mkdir /etc/selinux/modular-test/policy
mkdir –p /etc/selinux/modular-test/contexts/files
mkdir –p /etc/selinux/modular-test/modules/active/modules

Page 24

The SELinux Notebook - Sample Policy Source

10. Copy the following files to SELinux policy area:

cp seusers /etc/selinux/modular-test
cp dbus_contexts /etc/selinux/modular-test/contexts
cp default_contexts /etc/selinux/modular-test/contexts
cp x_contexts /etc/selinux/modular-test/contexts

11. Install the base policy with semodule. This will produce a base policy and a
number of files, some of which will be empty (note – if successful there are no
output messages):

semodule -s modular-test -b base.pp

12. The file and directory list in the /etc/selinux/modular-test
directory area should now consist of the following:

/etc/selinux/modular-test:
drwxr-xr-x. 3 root root 4096 2010-02-28 15:57 contexts
drwxr-xr-x. 3 root root 4096 2010-02-28 15:57 modules
drwxr-xr-x. 2 root root 4096 2010-02-28 15:57 policy
-rw-r--r--. 1 root root 51 2010-02-28 15:57 seusers

/etc/selinux/modular-test/contexts:
-rw-r--r--. 1 root root 195 2010-02-28 15:57 dbus_contexts
-rw-r--r--. 1 root root 53 2010-02-28 15:57 default_contexts
drwxr-xr-x. 2 root root 4096 2010-02-28 15:57 files
-rw-r--r--. 1 root root 0 2010-02-28 15:57 netfilter_contexts
-rw-r--r--. 1 root root 2764 2010-02-28 15:57 x_contexts

/etc/selinux/modular-test/contexts/files:
-rw-r--r--. 1 root root 68 2010-02-28 15:57 file_contexts
-rw-r--r--. 1 root root 0 2010-02-28 15:57 file_contexts.homedirs

/etc/selinux/modular-test/modules:
drwx------. 3 root root 4096 2010-02-28 15:57 active
-rw-------. 1 root root 0 2010-02-28 15:57 semanage.read.LOCK
-rw-------. 1 root root 0 2010-02-28 15:57 semanage.trans.LOCK

/etc/selinux/modular-test/modules/active:
-rw-r--r--. 1 root root 22625 2010-02-28 15:57 base.pp
-rw-------. 1 root root 32 2010-02-28 15:57 commit_num
-rw-------. 1 root root 68 2010-02-28 15:57 file_contexts
-rw-r--r--. 1 root root 0 2010-02-28 15:57 file_contexts.homedirs
-rw-------. 1 root root 68 2010-02-28 15:57 file_contexts.template
-rw-------. 1 root root 0 2010-02-28 15:57 homedir_template
drwx------. 2 root root 4096 2010-02-28 15:57 modules
-rw-------. 1 root root 0 2010-02-28 15:57 netfilter_contexts
-rw-r--r--. 1 root root 12457 2010-02-28 15:57 policy.kern
-rw-------. 1 root root 51 2010-02-28 15:57 seusers.final
-rw-------. 1 root root 25 2010-02-28 15:57 users_extra

/etc/selinux/modular-test/modules/active/modules:

/etc/selinux/modular-test/policy:
-rw-r--r--. 1 root root 12457 2010-02-28 15:57 policy.24

13. Edit the /etc/selinux/config file and change the entries shown. This
will set permissive mode and the policy location that will be loaded on the
next re-boot. Note - do not put any spaces after these entries.

SELINUX=permissive
SELINUXTYPE=modular-test

Page 25

The SELinux Notebook - Sample Policy Source

This will set permissive mode so if the policy is too restrictive it will still
allow a login at least. The SELinux policy name/location is also added
(modular-test). Note do not put any spaces after the entries.

14. To allow a file system relabeling to be actioned on reboot execute the
following command:

touch /.autorelabel

15. Optionally clear the log files so that they are clear for easier reading:

> /var/log/messages
> /var/log/audit/audit.log

16. Reboot the system. During the boot process, the file system should be re-
labeled.

reboot

2.4.1 Checking the Base Policy Build
Once the system has reloaded, SELinux will be running in ‘permissive’ mode. Logon
as root and follow the same routine as defined in the Checking The Build section.

Page 26

The SELinux Notebook - Sample Policy Source

3. Building the Message Filter Loadable Modules

3.1 Overview of modules
In the sections that follow there are a number of loadable modules built with
supporting ‘C’ programs that form a very simple message filter service as shown in
Figure 3.1. The external and internal gateways are client / server applications making
use of SEMARK services that are built into iptables as discussed in SELinux
Networking section of 'The Foundations' volume. The server component can also read
and write files to / from a protected directory area (or message queues). The message
filter itself is a simple file mover application that moves files from one queue to
another.

The modules attempt to use as many SELinux statements and rules as possible that are
then analysed in Appendix A - Policy Investigation Tools.

Figure 3.1: Message Filter Components
The components that form the message filter are:

External Gateway – This has a loadable module ext_gateway.conf that
defines the policy for the external gateway, it also includes an optional section
that is loaded when other message filter modules are loaded. The gateway requires
client / server applications (client.c and server.c) to be compiled for testing and
iptables (the mangle table) to be loaded for SECMARK testing.

NetLabel Service – This is a simple netlabel.conf module that just adds a
label at peer level. As F-12 does not have NetLabel services installed as default,
yum is used to install the service.

Internal Gateway – This is a version of the external gateway module that has
been modified to handle internal processing permissions
(int_gateway.conf). It requires additional entries in the iptables as it uses a
different network port. The same client / server applications are used as for the
external gateway.

File Mover - This has a loadable module move_file.conf that defines the
policy for moving files between the external and internal gateways. There is also
an application (move_file.c) that copies files from one message queue to
another (but controlled by the policy).

The security policy for the message filter is simply:

Page 27

External
Traffic Internal

Gateway
int_gateway_t

Message
Filter

move_file_t

Linux OS

Internal
Traffic

SELinux
Security Policy

External
Gateway

ext_gateway_t

The SELinux Notebook - Sample Policy Source

1. No other application must use the secured ports configured in the iptables
and allocated to the gateways. The secure ports are:

port 1111 and labeled int_gateway_packet_t
port 9999 and labeled ext_gateway_packet_t

All other ports are labeled: default_secmark_packet_t
2. The message queues and files must be protected from all possible access (read,

write, delete etc.) by other domains.

The assumptions are:

1. The SELinux policy will always be in enforcing mode while the message filter
is active.

2. The SELinux message filter modules may be in permissive mode for the initial
file and directory configuration / initialisation via restorecon (this is so
that permissions such as relabelto / relabelfrom are limited to the
absolute minimum, in fact only the iptables need relabeling permissions as
they are loaded under the unconfined_t domain).

The modules are built and tested in the following sequence:

1. The external gateway is built along with the client / server applications. This is
used to demonstrate the basic secmark functionality using the iptables.

2. The NetLabel module is then built to demonstrate adding a netlabel to the peer
network service.

3. The internal gateway and the file mover application and module are finally
built to demonstrate the overall message filter as shown in Figure 3.1.

Once these have been built and tested, the policy will be reviewed in Appendix A -
Policy Investigation Tools.

Any comments or views on the modules, applications and their testing are welcome.

3.2 Building the SECMARK Test Loadable Module
The SECMARK tests make use of the external gateway loadable module. The
objective of this module is to prove that SECMARK labels can be added to packets,
and that depending on the label assigned, those packets can be granted access to the
correct domain and denied access other domains using SELinux enforcement.

The tests will use various client / server configurations using the network loop back
(lo) interface (see Figure 3.2) as follows:

1. Use a ‘secure’ client / server running in the ext_gateway_t domain that
will show that packets labeled:

system_u:object_r:ext_gateway_packet_t

on ports 9999 will get through, while other ports will NOT get through, as
they would be labeled:

system_u:object_r:default_secmark_packet_t

Page 28

The SELinux Notebook - Sample Policy Source

2. Use an ‘insecure’ client / server running in the unconfined_t domain that
will show that packets labeled:

system_u:object_r: ext_gateway_packet_t

will NOT get through, while other ports will get through, as they would be
labeled:

system_u:object_r:default_secmark_packet_t
3. A mixture of secure and insecure client / server configurations to show access

is denied by SELinux unless both services are running in the
ext_gateway_t domain using port 9999 on the lo network.

Figure 3.2: SECMARK Testing – The scenarios for testing the access allowed for
SECMARK packets. Note that not all of these tests will be described.

The SECMARK test loadable module (ext_gateway.conf) has a boolean
called ext_gateway_audit that by default enables the transition, send and
receive audit events to be logged when successful, these events are shown in the test
results below. The auditallow statements can be disabled by using the following
command:

setsebool –P ext_gateway_audit=false

To test SECMARK functionality the following will need to be built and installed:

• The base loadable module built in the Building a Base Loadable Module
Policy section is installed and active.

• A loadable policy module (ext_gateway) that will enforce the SECMARK
policy configured via iptables. Note the following points:

a. The ext_gateway module requires a new role of
message_filter_r to be added to SELinux. This has only been
added to demonstrate a role_transition rule.

Page 29

secure_client secure_server

client server

iptables

mangle table

SECMARK

CONNSECMARK

ext_gateway_t

unconfined_t

The SELinux Notebook - Sample Policy Source

b. The ext_gateway module has an optional section that is only
enabled when other modules are loaded as a further exercise for the
message filter service.

• An iptables configuration file that will set-up the mangle table to mark
packets with SECMARK and CONNSECMARK labels.

• Two executable clients (secure_client and client) and two executable
servers (secure_server and server) that will be used to test the
SECMARK functionality. Note that the clients and servers are built using
common source code, and are only labeled differently to allow testing (the
secure executables are labeled secure_services_exec_t while the
others are labeled by default with unconfined_t).

The following steps need to be followed to build the test services. It is assumed that
the services are installed in ./notebook-source/message-
filter/gateway:

1. Ensure you are logged on as ‘root’ and SELinux is running in permissive
mode (setenforce 0) to perform the build process.

2. Produce a ext_gateway.conf loadable module file with a text editor
(such as vi or gedit) containing the contents shown below:

module ext_gateway 1.1.0;

##
#
This Loadable Module will allow SECMARK, NetLabel and a simple
Message Filter to be tested with the simple client / server 'C'
programs (client.c and server.c).
#
The module is used with the base.conf that sets up the unconfined_t
space. This module can be built by:
checkmodule -m ext_gateway.conf -o ext_gateway.mod
semodule_package -o ext_gateway.pp -m ext_gateway.mod
-f gateway.fc
semodule -v -s modular-test -i ext_gateway.pp
#
The gateway.fc file can be modified to reflect where the client /
binaries will located (currently /usr/local/bin) and once they have
been compiled the exe's need to be labeled by restorecon:
restorecon -f restorefiles_gateway
#
The test requires the client.c and server.c programs compiled by:
gcc -o secure_server server.c -lselinux
gcc -o secure_client client.c -lselinux
The executables will be labeled secure_services_exec_t
#
gcc -o server server.c -lselinux
gcc -o client client.c -lselinux
The executables will be labeled the default of unconfined_t
#
The secure port for this external gateway is 9999 and can only be
read/write by the secure client / server. The internal gateway will
use port 1111 and can only be read/write by the secure client / server.#
Any other port can be read / write by the standard client / server.
#
The iptables_secmark script can be modified to other ports if required.#
WARNING - If the iptables are not loaded to label packets, ports etc.
then the standard client / server can use the secure ports.
#
Run setenforce 1, the policy can be tested using combinations of:
./server <port>
./secure_server <port>
#

Page 30

The SELinux Notebook - Sample Policy Source

./client <host> <port>
./secure_client <host> <port>
#
There is a boolean that can turn off the auditallow statements:
setsebool [-P] ext_gateway_audit off
#
The module transitions to a role of message_filter_r simply to show
a role transition. To add the role to user_u the semanage command is
used as follows:
semanage user -m -R "message_filter_r unconfined_r" user_u
Note: Need to put in the unconfined_r role as semanage will remove it
from the current policy otherwise, causing much grief.
#
To allow the message filter to be tested with the move_file.conf
(and int_gateway.conf) modules, a set of optional statements are
added that will be enabled once the move_file.conf module is loaded
for testing. This allows the server application to either read or
write files to the message queues as described in the server.c
comments section (and the SELinux Notebook).
#
##

require {
type unconfined_t;
role unconfined_r;
class packet { send recv relabelto };
class process { fork sigchld transition siginh rlimitinh noatsecure signal
};
class file { entrypoint read getattr execute relabelto unlink write create
};
class filesystem { getattr associate };
class chr_file { read write getattr };
class dir { read search getattr write add_name remove_name };
class fd use;
class lnk_file read;
class tcp_socket { write listen node_bind name_bind accept bind read
name_connect connect create getopt };
class association recvfrom;
class unix_stream_socket { create connect };
}

attribute message_filter_domains;

All iptables SECMARK packets other than ports 9999 and 1111 are marked
with this label:
type default_secmark_packet_t;

The external gateway will have a SECMARK in the iptables of this label:
type ext_gateway_packet_t;

The external gateway will run in this domain:
type ext_gateway_t;
The binaries will be labeled:
type secure_services_exec_t;

Add the gateway domain to the attribute:
typeattribute ext_gateway_t message_filter_domains;

Use message_filter_r role and role transition for the gateway:
role message_filter_r types ext_gateway_t;
allow unconfined_r message_filter_r;
role_transition unconfined_r secure_services_exec_t message_filter_r;

boolean to enable / disable audit events
bool ext_gateway_audit true;

if (ext_gateway_audit) {
Audit the send and recv events:
 auditallow unconfined_t default_secmark_packet_t : packet { send
recv };
Audit the send and recv events:
 auditallow ext_gateway_t ext_gateway_packet_t : packet { send recv };
Audit the transition:
 auditallow unconfined_t ext_gateway_t : process { transition };
 }

Page 31

The SELinux Notebook - Sample Policy Source

End of conditional statements

Allow all ports except 1111 & 9999 to be handled by unconfined_t:
allow unconfined_t default_secmark_packet_t : packet { send recv };

Allow unconfined_t to relabel the secure ports. This is needed so that
iptables can be updated easily. Note: Against security policy, however
these need to be loaded at boot time when the policy is in enforcing mode
so no choice !!
allow unconfined_t ext_gateway_packet_t : packet relabelto;
allow unconfined_t default_secmark_packet_t : packet relabelto;

Allow gateway access only to secure ports:
allow ext_gateway_t ext_gateway_packet_t : packet { send recv };

Allow the external gateway to transition to ext_gateway_t by using the
type_transition statement (note that the internal gateway does not use
this method but transitions via runcon instead):
allow unconfined_t ext_gateway_t : process { transition };
allow unconfined_t secure_services_exec_t : file { read execute getattr };
allow ext_gateway_t secure_services_exec_t : file { entrypoint };
type_transition unconfined_t secure_services_exec_t : process
ext_gateway_t;
#

Stop segmentation faults
allow ext_gateway_t unconfined_t : filesystem associate;
allow unconfined_t ext_gateway_t : process noatsecure;
dontaudit unconfined_t ext_gateway_t : process { siginh rlimitinh };
#
Need this in F-12 build to allow the client / server apps to exit:
allow unconfined_t ext_gateway_t : process signal;

Allow the ext_gateway_t access to areas under unconfined_t domain:
allow ext_gateway_t unconfined_t : packet { recv send };
allow ext_gateway_t unconfined_t : chr_file { read write getattr };
allow ext_gateway_t unconfined_t : dir search;
allow ext_gateway_t unconfined_t : fd use;
allow ext_gateway_t unconfined_t : filesystem getattr;
allow ext_gateway_t unconfined_t : tcp_socket name_connect;
allow ext_gateway_t unconfined_t : association recvfrom;
allow ext_gateway_t self : dir search;
allow ext_gateway_t self : tcp_socket { read create connect };

Need this in F-12 build to allow the client / server apps to exit:
allow ext_gateway_t unconfined_t : process sigchld;
This was the F-10 statement:
dontaudit ext_gateway_t unconfined_t : process sigchld;

For client and server to access the shared libc:
allow ext_gateway_t unconfined_t : file { read getattr execute };
dontaudit ext_gateway_t unconfined_t : dir { getattr };
allow ext_gateway_t unconfined_t : lnk_file read;
#

Required if use host name instead of the IP address (e.g. localhost
instead of 127.0.0.1) in the client command line:
dontaudit ext_gateway_t self : unix_stream_socket { create connect };

Required to get context information when using the libselinux api calls
getcon() and getpeercon():
allow ext_gateway_t self : file read;
allow ext_gateway_t self : tcp_socket getopt;

Required to allow setfiles to relabel the secure client/server binaries:
Note: Against security policy so commented out as can do this at
system build time with setenforce 0
allow unconfined_t secure_services_exec_t : file { write relabelto };
allow secure_services_exec_t unconfined_t : filesystem associate;

These entries are for the server only:
allow ext_gateway_t self : tcp_socket { listen write accept bind };
allow ext_gateway_t unconfined_t : tcp_socket { name_bind node_bind };
#

Page 32

The SELinux Notebook - Sample Policy Source

#
####################### START OPTIONAL SECTION ###########################
#
optional {
#
###
#
These entries are for the message filter part of the exercise
where files are moved from the in_queue to the out_queue by the #
message filter (move_file.c) application.
#
These rules allow ext_gateway_t to write files to the
in_queue. The int_gateway_t is allowed to read and remove
files from the out_queue. #
#
###
#
require {

These are defined in the move_file.conf module:
type in_queue_t, out_queue_t, in_file_t, out_file_t;
This is defined in the int_gateway.conf module:
type int_gateway_t;

}
Allow the external gateway access to in_queue rules:
The server application then writes the file to the in_queue:
type_transition ext_gateway_t in_queue_t : file in_file_t;
allow ext_gateway_t in_queue_t : dir { read getattr write search
add_name };
allow ext_gateway_t in_file_t : file { write create getattr };
allow in_file_t unconfined_t : filesystem associate;
dontaudit ext_gateway_t unconfined_t : filesystem getattr;
dontaudit ext_gateway_t self : file getattr;

Allow the internal gateway access to out_queue rules:
type_transition int_gateway_t out_queue_t : file out_file_t;
allow int_gateway_t out_queue_t : dir { read getattr write remove_name
search };
allow int_gateway_t out_file_t : file { read getattr unlink };
}
#
######################## END OPTIONAL SECTION ############################
#

3. Produce a gateway.fc file (a segment that will be added to the
file_contexts file during the build) with the contents shown below. This
will be used to relabel application files and directories.

/usr/local/bin/secure_client system_u:object_r:secure_services_exec_t
/usr/local/bin/secure_server system_u:object_r:secure_services_exec_t
/usr/local/bin/client system_u:object_r:unconfined_t
/usr/local/bin/server system_u:object_r:unconfined_t

4. Compile the policy with checkmodule to produce an intermediate binary
policy file:

checkmodule -m ext_gateway.conf -o ext_gateway.mod

5. Package the policy with semodule_package, this will produce a policy
module file:

semodule_package -o ext_gateway.pp -m ext_gateway.mod -f gateway.fc

6. Install the loadable module with semodule (note – if successful there are no
output messages):

Page 33

The SELinux Notebook - Sample Policy Source

semodule -v -s modular-test -i ext_gateway.pp

7. If there are no errors reported, then the loadable module has been added to the
policy store and loaded as a part of the policy. The policy module can be
checked by:

semodule -s modular-test -l

8. Produce a ‘C’ application called client.c with the contents shown below:

/**/
/* */
/* This is the client component for the Notebook demo modular policy. It */
/* will be used to demonstrate SECMARK, NetLabel and Message Filter */
/* loadable modules. */
/* */
/* Copyright (C) 2009 Richard Haines */
/* */
/* This program is free software: you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* */
/**/
/* This client connects to the server that builds a buffer containing */
/* information on ports and contexts used by the server, returning this */
/* to the client. */
/* */
/* The client is compiled as follows: */
/* gcc client.c -o client -lselinux */
/* (This is labeled system_u:object:unconfined_t) */
/* gcc client.c -o secure_client -lselinux */
/* (This is labeled system_u:object:secure_services_exec_t) */
/* */
/* For the tests, the binaries should be installed in /usr/local/bin and */
/* then the restorecon -f restorefiles_gateway run once the */
/* external_gateway loadable module has been installed. */
/**/
/* For SECMARK, NetLabel and Message Filter demos the clients are called */
/* as follows: */
/* ./client <port> - Where the port is any you like (e.g. 1234) */
/* ./secure_client <port> - Where for the demo thes ports are 1111 */
/* and 9999 as the iptables mangle table has been configured for these.*/
/* */
/**/
/* */
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <selinux/selinux.h>

#define MAXBUFFERSIZE 256
#define ENFORCING 1

#define ESC 0x1B

char red [] = "0;31";
char green [] = "0;32";

Page 34

The SELinux Notebook - Sample Policy Source

char reset [] = "0";

int main(int argc, char *argv [])
{

int rc, sock_fd, bytes_received;
char buffer [MAXBUFFERSIZE];
struct hostent *server_info;
struct sockaddr_in server_addr;
short client_port;
security_context_t context, peer_context;
char *peer_context_str;

if (argc != 3) {
fprintf (stderr,"usage: %s <hostname> <port> (Use port 9999 for secure

port test)\n", argv[0]);
exit (1);

}

client_port = atoi (argv [2]);

if ((server_info = gethostbyname (argv [1])) == NULL) {
herror ("Client gethostbyname");
exit (1);

}

if (rc = security_getenforce () != ENFORCING)
printf ("Should be in enforcing mode for valid testing\n");

if ((sock_fd = socket(PF_INET, SOCK_STREAM, 0)) == -1) {
perror ("Client Socket");
exit (1);

}

bzero((char *) &server_addr, sizeof(server_addr));
server_addr.sin_family = AF_INET;
server_addr.sin_port = htons(client_port);
server_addr.sin_addr = *((struct in_addr *)server_info->h_addr);

if (connect (sock_fd, (struct sockaddr *)&server_addr, sizeof(struct
sockaddr)) == -1) {

perror ("Client connect");
exit (1);

}

// clear the buffer
memset (buffer, 0, sizeof(buffer));
if ((bytes_received = recv (sock_fd, buffer, MAXBUFFERSIZE-1, 0)) == -1) {

perror ("Client recv");
exit (1);

}

buffer [bytes_received] = '\0'; // Add null at end of line.
printf ("\033[%smServer Information in RED:\n", red);
printf ("%s \n", buffer);

// Print the Clients context information
if (rc = getcon (&context) < 0) {

perror ("Client context");
exit (1);

}

if (rc = getpeercon (sock_fd, &peer_context) < 0)
peer_context_str = strdup ("No Peer Context Available");

else {
peer_context_str = strdup (peer_context);
freecon (peer_context);

}
printf ("\033[%smClient Information in GREEN:\n", green);
printf ("Client Context: %s \nClient Peer Context: %s \n", context,

peer_context_str);

freecon (context);
close (sock_fd);
printf ("\033[%sm\n", reset);
return 0;

Page 35

The SELinux Notebook - Sample Policy Source

}

9. Compile two versions of the client by running:

gcc -o secure_client client.c -lselinux
gcc -o client client.c -lselinux

10. Produce a ‘C’ application called server.c with the contents shown below:

/**/
/* */
/* This is the server component for the Notebook demo modular policy. It */
/* will be used to demonstrate SECMARK and NetLabel network functionality */
/* and also creates and reads files for the Message Filter example. */
/* */
/* Copyright (C) 2009 Richard Haines */
/* */
/* This program is free software: you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* */
/**/
/* */
/* The server is compiled as follows: */
/* gcc server.c -o server -lselinux */
/* (This is labeled system_u:object:unconfined_t) */
/* gcc server.c -o secure_server -lselinux */
/* (This is labeled system_u:object:secure_services_exec_t) */
/* */
/* For the tests, the binaries should be installed in /usr/local/bin and */
/* then the restorecon -f restorefiles_gateway run once the */
/* external_gateway loadable module has been installed. */
/* */
/**/
/* The server receives a connection from a client (but no data) and then */
/* builds a buffer containing information on ports and contexts used, */
/* returning this to the client (the default action). */
/* */
/**/
/* For the SECMARK and NetLabel demo the servers are called as follows: */
/* server <port> - Where the port is any you like (e.g. 1234) */
/* secure_server <port> - Where for the demo are ports 9999 and 1111 */
/* as the test iptables mangle table has been configured for these. */
/* ports. */
/**/
/* For the Message Filter demo the servers are called as follows: */
/*--*/
/* To queue messages to the Message Filter's IN queue: */
/* secure_server <port> in - Where the port is 1111 */
/* And then run the secure_client in another terminal session: */
/* secure_client 127.0.0.1 9999 */
/* Note - This is using the external_gateway module for controlling */
/* network access and the move_file module for controlling file access. */
/* */
/* The [in] command line option writes the buffer to a file named */
/* Message-<message_number> in the in_path directory. If the server is */
/* restarted, then the <message_number> just starts from 1 again */
/* These files will be removed by the Message Filter move_file */
/* application and moved to the out_path directory. */
/*--*/
/* To read messages from the Message Filter's OUT queue (after they have */
/* been move by the move_file application): */

Page 36

The SELinux Notebook - Sample Policy Source

/* runcon -t int_gateway_t -r message_filter_r secure_server 9999 */
/* */
/* And then run the secure_client in another terminal session: */
/* runcon -t int_gateway_t -r message_filter_r secure_client \ */
/* 27.0.0.1 9999 */
/* */
//* Note - This is using the internal_gateway module for controlling */
/* network access and the move_file module for controlling file access. */
/* */
/* The [out] command line option reads files from the out_path directory */
/* and sents them to the client. The file is then unlinked. */
/* */
/**/
/* */
/* NOTE: unconfined_t is not allowed to read/write files in the [in] or */
/* [out] directories, if it tries, the context is displayed and the */
/* server will exit (e.g 'server 1234 in' and 'client 127.0.0.1 1234'). */
/* */
/* Note when tested, the fopen function call on the [in] queue processing */
/* caused a segmentation fault (a feature ??). The only way found to stop */
/* this was to add an 'opendir' function call to the code, the server can */
/* then exit gracefully displaying the context. */
/* */
/**/

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/param.h>
#include <dirent.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <selinux/selinux.h>

#define MAXBUFFERSIZE 256

// variable to store current path
char in_path[] = "/usr/message_queue/in_queue";
char out_path[] = "/usr/message_queue/out_queue";

int main(int argc, char *argv [])
{

short server_port;
int count, i, rc, sock_fd, new_sock_fd, message_number, option;
struct sockaddr_in server_addr;
struct sockaddr_in client_addr;
socklen_t sin_size;
char buffer [MAXBUFFERSIZE];
security_context_t context, peer_context, dir_context;
char *peer_context_str;
FILE *fp;
char file_name [MAXPATHLEN];
char in[] = "in";
char out[] = "out";

 DIR *dp;
struct dirent *ep;

if (argc < 2) {
fprintf (stderr,"Usage: %s <port>\n", argv[0]);
exit (1);

}

if ((server_port = atoi (argv [1])) == 0) {
fprintf (stderr,"Usage: %s <port>\n", argv[0]);
exit (1);

}

option = 0; // Set to default (i.e. no in or out queue parameter)

// Display default message about port, but alter if other options
selected.

sprintf (buffer, "Listening on port %d", server_port);

Page 37

The SELinux Notebook - Sample Policy Source

if (argc == 3) {
if (strcmp(argv [2], in) == 0) {

option = 1;
sprintf (buffer, "Listening on port %d. Information sent to client

will be written to files in %s", server_port, in_path);
}
else if (strcmp(argv [2], out) == 0) {

option = 2;
sprintf (buffer, "Listening on port %d. Files will be read from %s

and the contents sent to the client", server_port, out_path);
}
else {

fprintf (stderr,"Usage: %s <port> [in | out]\n", argv[0]);
exit (1);
}

}

printf ("%s\n", buffer);

if ((sock_fd = socket(PF_INET, SOCK_STREAM, 0)) == -1) {
perror ("Server socket");
exit (1);

}

// Set the message number to 1 so a "Message[message_number] is generated.
message_number = 1;

bzero((char *) &server_addr, sizeof(server_addr));
server_addr.sin_family = AF_INET;
server_addr.sin_port = htons(server_port);
server_addr.sin_addr.s_addr = INADDR_ANY;

if (bind (sock_fd, (struct sockaddr *)&server_addr, sizeof(struct
sockaddr)) == -1) {

perror ("Server bind");
exit (1);

}

if (listen (sock_fd, 5) == -1) {
perror ("Server listen");
exit (1);

}

while (1) {
sin_size = sizeof(struct sockaddr_in);
if ((new_sock_fd = accept (sock_fd, (struct sockaddr *)&client_addr,

&sin_size)) == -1) {
perror ("Server accept");
continue;

}

// Get Server context information
if (rc = getcon (&context) < 0) {

perror ("Server context");
exit (1);

}

if (rc = getpeercon (new_sock_fd, &peer_context) < 0)
peer_context_str = strdup ("No Peer Context Available");

else {
peer_context_str = strdup (peer_context);
freecon (peer_context);

}
// Clear the buffer of rubbish
memset (buffer, 0, sizeof(buffer));

switch (option) {
case 1:
// This option sends the buffer to client,
// and then writes it to a file in the in_que

// Make up a file name
sprintf (file_name,"Message-%d", message_number);

// Build buffer with Message Number at start.

Page 38

The SELinux Notebook - Sample Policy Source

// The Message number will also be the file name
sprintf (buffer, "This is %s from the server listening on port: %d

\nClient source port: %d \nServer Context: %s \nServer Peer Context: %s \n",
file_name, ntohs (server_addr.sin_port), ntohs (client_addr.sin_port),
context, peer_context_str);

if (send (new_sock_fd, buffer, strlen (buffer), 0) == -1)
perror ("Server send");

// Now write buffer to file as well

// This opendir has been put here as get Segmentation
// fault if just do the fopen and its
// unconfined_t trying to write a file here
if ((dp = opendir (in_path)) == 0) {
// Could be that unconfined_t is trying this, if so exit showing

context:
getcon (&dir_context);
printf ("Open Directory error %s Context is: %s\n", in_path,

dir_context);
exit (1);

}
closedir (dp);

// Make up full path + file name
sprintf (file_name,"%s/Message-%d", in_path, message_number);
if ((fp = fopen (file_name, "w")) == 0) {

ferror (fp);
exit (0);

}

count = strlen (buffer);
if (fwrite (buffer, count, 1, fp) != 1) {

ferror (fp);
exit (0);

}
fclose (fp);
break;

case 2:
// This option will read a file from the out_queue,
// send it to the client and then delete it.

if ((dp = opendir (out_path)) == 0) {
// Could be that unconfined_t is trying this on insecure
// channel ?? If so then exit showing context:

getcon (&dir_context);
printf ("Open Directory error %s Context is: %s\n", out_path,

dir_context);
exit (1);

}

do {
if ((ep = readdir (dp)) == 0) {

sprintf (buffer, "Server has no files to send\n");
break;

}
} while ((strcmp(ep->d_name, ".") == 0) || (strcmp(ep->d_name,

"..") == 0));

if (ep != 0) { // There is a file if ep != 0, otherwise send note
to client saying no more files

sprintf (file_name,"%s/%s", out_path, ep->d_name);

 if ((fp = fopen (file_name, "r")) == 0) {
ferror (fp);
exit (0);

}

// Read Contents of File
if (fread (buffer, sizeof (buffer), 1, fp) != 0) {

ferror (fp);
exit (0);

}
unlink (file_name);
fclose (fp);
closedir (dp);

Page 39

The SELinux Notebook - Sample Policy Source

}

// Now send the buffer to client
count = strlen (buffer);
if (send (new_sock_fd, buffer, count, 0) == -1)

perror ("Server send");
break;

default: // There is no in_que or out_que parameter so just send the
buffer.

// Make up a Message name
sprintf (file_name,"Message-%d", message_number);

// Print Server network information
printf ("Server has connection from client: host = %s destination

port = %d source port = %d\n",
inet_ntoa(client_addr.sin_addr), ntohs (server_addr.sin_port),

ntohs (client_addr.sin_port));

printf ("Server Context: %s \nServer Peer Context: %s \n",
context, peer_context_str);

sprintf (buffer, "This is %s from the server listening on port: %d
\nClient source port: %d \nServer Context: %s \nServer Peer Context: %s \n",
file_name, ntohs (server_addr.sin_port), ntohs (client_addr.sin_port),
context, peer_context_str);

if (send (new_sock_fd, buffer, strlen (buffer), 0) == -1)
perror ("Server send");

}
message_number++;
freecon (context);
close (new_sock_fd);

}
return 0;

}

11. Compile two versions of the server by running:

gcc -o secure_server server.c -lselinux
gcc -o server server.c -lselinux

12. Move the binaries to /usr/local/bin:

cp client /usr/local/bin
cp secure_client /usr/local/bin
cp server /usr/local/bin
cp secure_server /usr/local/bin

13. Produce a script called iptables_secmark with the contents shown
below. This will be used to load the iptables (notes: 1. that if the current
mangle table has other entries, then they will be lost as this script flushes the
table before loading the new contents. 2. The entries for the internal gateway
are commented out. This is because the module has not been built yet and
leaving these in would produce an error when loading the table with SELinux
in enforcing mode).

Flush the mangle table first:
iptables -t mangle -F

#-------------- INPUT IP Stream --------------------#

This INPUT rule sets all packets to default_secmark_packet_t: as it is
executed first:

Page 40

The SELinux Notebook - Sample Policy Source

iptables -t mangle -A INPUT -i lo -p tcp -d 127.0.0.0/8 -j SECMARK
--selctx system_u:object_r:default_secmark_packet_t

These rules that will replace the above context with the internal or
external gateway if port 9999 or 1111 is found in either the source or
destination port of the packet:
iptables -t mangle -A INPUT -i lo -p tcp --dport 9999 -j SECMARK --selctx
system_u:object_r:ext_gateway_packet_t
iptables -t mangle -A INPUT -i lo -p tcp --sport 9999 -j SECMARK --selctx
system_u:object_r:ext_gateway_packet_t
#
These are not required until using the internal gateway:
#iptables -t mangle -A INPUT -i lo -p tcp --dport 1111 -j SECMARK --selctx
system_u:object_r:int_gateway_packet_t
#iptables -t mangle -A INPUT -i lo -p tcp --sport 1111 -j SECMARK --selctx
system_u:object_r:int_gateway_packet_t

iptables -t mangle -A INPUT -m state --state ESTABLISHED,RELATED -j
CONNSECMARK --save

#-------------- OUTPUT IP Stream --------------------#

This OUTPUT rule sets all packets to default_secmark_packet_t: as it is
executed first:
iptables -t mangle -A OUTPUT -o lo -p tcp -d 127.0.0.0/8 -j SECMARK
--selctx system_u:object_r:default_secmark_packet_t

These rules that will replace the above context with the internal or
external gateway if port 9999 or 1111 is found in either the source or
destination port of the packet:

iptables -t mangle -A OUTPUT -o lo -p tcp --dport 9999 -j SECMARK --selctx
system_u:object_r:ext_gateway_packet_t
iptables -t mangle -A OUTPUT -o lo -p tcp --sport 9999 -j SECMARK --selctx
system_u:object_r:ext_gateway_packet_t
#
These are not required until using the internal gateway:
#iptables -t mangle -A OUTPUT -o lo -p tcp --dport 1111 -j SECMARK
--selctx system_u:object_r:int_gateway_packet_t
#iptables -t mangle -A OUTPUT -o lo -p tcp --sport 1111 -j SECMARK
--selctx system_u:object_r:int_gateway_packet_t

iptables -t mangle -A OUTPUT -m state --state ESTABLISHED,RELATED -j
CONNSECMARK --save

iptables -t mangle -L

14. Produce a restorefiles_gateway file with the contents shown below.
This will be used by the restorecon command to relabel the SECMARK
test client / server executables after compilation and if any updates are done
later.

/usr/local/bin/secure_client
/usr/local/bin/secure_server
/usr/local/bin/client
/usr/local/bin/server

15. Run the restorecon(8) command to relabel the secure versions of the
client / server as follows:

restorecon –f restorefiles_gateway

16. Check that the secure versions of the client / server are labeled correctly using
ls –Z /usr/local/bin.

Page 41

The SELinux Notebook - Sample Policy Source

user_u:object_r:unconfined_t client
user_u:object_r:secure_services_exec_t secure_client
user_u:object_r:secure_services_exec_t secure_server
user_u:object_r:unconfined_t server

17. Add the message_filter_r role by running semanage as follows:

semanage user -m -R "message_filter_r unconfined_r" user_u

Note: Need to add the unconfined_r role as semanage will remove it from
the current policy otherwise, causing much grief (a bug or feature ??). See the
Using sediffx section for more information.

The installation process is now complete, the testing is discussed in the next section.

3.2.1 Testing the Module
To test the SECMARK functionality it is recommended that three virtual terminal
sessions are opened (as shown in Figure 3.3) for:

1. Running clients as they will display status messages if successful.

2. Running the servers as they display messages when connections are made with
the clients.

3. Viewing the audit log file. Note that the module has auditallow rules on
packet { send recv } so that these events can be seen.

Figure 3.3: Testing using three virtual terminal sessions

Page 42

The SELinux Notebook - Sample Policy Source

3.2.1.1 Running the Tests

It is assumed that there are three terminal sessions logged in as root as shown in
Figure 3.3), with the client and server windows both at the directory with the
executable secmark code and scripts, and the third window for tailing the
audit.log file.

Before starting the tests:

1. In the window that will display the audit log, execute the following command:

tail –f /var/log/audit/audit.log.

2. In a window run the following command to load the iptables:

./iptables_secmark

Note that it is important to load the iptables as explained in the Importance of
Loading the iptables section below.

3. In a window run the following command to start enforcing policy:

setenforce 1

Note that the server must be started before the client. To exit any of the server
sessions press ctrl/c.

Test 1 – Running secure server and secure client sessions on port 9999 using the
loopback interface (127.0.0.1):

1. In a window run the following command to start the secure server:

secure_server 9999

2. In a window run the following command to start the secure client:

secure_client 127.0.0.1 9999

The audit.log should contain only granted events on transition, send and
recv (note that the transition also transitioned the role to message_filter_r):

type=AVC msg=audit(1249742538.972:23): avc: granted { transition } for
pid=2905 comm="bash" path="/usr/local/bin/secure_server" dev=dm-0 ino=355514
scontext=user_u:unconfined_r:unconfined_t
tcontext=user_u:message_filter_r:ext_gateway_t tclass=process
type=SYSCALL msg=audit(1249742538.972:23): arch=40000003 syscall=11 success=yes
exit=0 a0=858a678 a1=85932c0 a2=858c8e8 a3=0 items=0 ppid=2520 pid=2905 auid=0
uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts1 ses=1
comm="secure_server" exe="/usr/local/bin/secure_server"
subj=user_u:message_filter_r:ext_gateway_t key=(null)

type=AVC msg=audit(1249742544.827:24): avc: granted { transition } for
pid=2907 comm="bash" path="/usr/local/bin/secure_client" dev=dm-0 ino=354307
scontext=user_u:unconfined_r:unconfined_t
tcontext=user_u:message_filter_r:ext_gateway_t tclass=process
type=SYSCALL msg=audit(1249742544.827:24): arch=40000003 syscall=11 success=yes
exit=0 a0=87f92d8 a1=87e9ca8 a2=87ee8e8 a3=0 items=0 ppid=2496 pid=2907 auid=0
uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=1
comm="secure_client" exe="/usr/local/bin/secure_client"
subj=user_u:message_filter_r:ext_gateway_t key=(null)

Page 43

The SELinux Notebook - Sample Policy Source

type=AVC msg=audit(1249742544.833:25): avc: granted { send } for pid=2907
comm="secure_client" saddr=127.0.0.1 src=43592 daddr=127.0.0.1 dest=9999
netif=lo scontext=user_u:message_filter_r:ext_gateway_t
tcontext=system_u:object_r:ext_gateway_packet_t tclass=packet
type=AVC msg=audit(1249742544.833:25): avc: granted { recv } for pid=2907
comm="secure_client" saddr=127.0.0.1 src=43592 daddr=127.0.0.1 dest=9999
netif=lo scontext=user_u:message_filter_r:ext_gateway_t
tcontext=system_u:object_r:ext_gateway_packet_t tclass=packet
....
....
type=AVC msg=audit(1249742544.834:26): avc: granted { send } for pid=2905
comm="secure_server" saddr=127.0.0.1 src=9999 daddr=127.0.0.1 dest=43592
netif=lo scontext=user_u:message_filter_r:ext_gateway_t
tcontext=system_u:object_r:ext_gateway_packet_t tclass=packet
type=AVC msg=audit(1249742544.834:26): avc: granted { recv } for pid=2905
comm="secure_server" saddr=127.0.0.1 src=9999 daddr=127.0.0.1 dest=43592
netif=lo scontext=user_u:message_filter_r:ext_gateway_t
tcontext=system_u:object_r:ext_gateway_packet_t tclass=packet

Test 2 – Running the server on port 9999 and the secure client on port 1234 using the
loopback interface:

1. In a window run the following command to start the server:

server 9999

2. In a window run the following command to start the secure client:

secure_client 127.0.0.1 1234
Note: ctrl/c will exit the session

There should be an AVC audit message where the secure client is granted the
transition but denied the send:

Note that the client is allowed to transition:
type=AVC msg=audit(1249742696.572:30): avc: granted { transition } for
pid=2944 comm="bash" path="/usr/local/bin/secure_client" dev=dm-0 ino=354307
scontext=user_u:unconfined_r:unconfined_t
tcontext=user_u:message_filter_r:ext_gateway_t tclass=process
type=SYSCALL msg=audit(1249742696.572:30): arch=40000003 syscall=11 success=yes
exit=0 a0=87f92d8 a1=87f5300 a2=87ee8e8 a3=0 items=0 ppid=2496 pid=2944 auid=0
uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=1
comm="secure_client" exe="/usr/local/bin/secure_client"
subj=user_u:message_filter_r:ext_gateway_t key=(null)

But is not allowed to send message to the server as the packet
is marked default_secmark_packet_t:
type=AVC msg=audit(1249742696.579:31): avc: denied { send } for pid=2944
comm="secure_client" saddr=127.0.0.1 src=42942 daddr=127.0.0.1 dest=1234
netif=lo scontext=user_u:message_filter_r:ext_gateway_t
tcontext=system_u:object_r:default_secmark_packet_t tclass=packet

Test 3 – Running both client and server sessions using port 1234 on the loopback
interface (127.0.0.1):

1. In a window run the following command to start the server:

server 1234

Page 44

The SELinux Notebook - Sample Policy Source

2. In a window run the following command to start the client:

client 127.0.0.1 1234

The audit.log should contain only granted events on send and recv (note that
there is NO transition and the role remains as unconfined_r):

type=AVC msg=audit(1249742778.361:34): avc: granted { send } for pid=2964
comm="client" saddr=127.0.0.1 src=42943 daddr=127.0.0.1 dest=1234 netif=lo
scontext=user_u:unconfined_r:unconfined_t
tcontext=system_u:object_r:default_secmark_packet_t tclass=packet
type=AVC msg=audit(1249742778.361:34): avc: granted { recv } for pid=2964
comm="client" saddr=127.0.0.1 src=42943 daddr=127.0.0.1 dest=1234 netif=lo
scontext=user_u:unconfined_r:unconfined_t
tcontext=system_u:object_r:default_secmark_packet_t tclass=packet
....
....
type=AVC msg=audit(1249742778.362:35): avc: granted { send } for pid=2961
comm="server" saddr=127.0.0.1 src=1234 daddr=127.0.0.1 dest=42943 netif=lo
scontext=user_u:unconfined_r:unconfined_t
tcontext=system_u:object_r:default_secmark_packet_t tclass=packet
type=AVC msg=audit(1249742778.362:35): avc: granted { recv } for pid=2961
comm="server" saddr=127.0.0.1 src=1234 daddr=127.0.0.1 dest=42943 netif=lo
scontext=user_u:unconfined_r:unconfined_t
tcontext=system_u:object_r:default_secmark_packet_t tclass=packet

Test 4 – Running the server on port 9999 and the secure client on port 9999 using the
loopback interface:

3. In a window run the following command to start the server:

server 9999

4. In a window run the following command to start the secure client:

secure_client 127.0.0.1 9999
Note: ctrl/c will exit the session

The AVC audit messages show that the secure client has been granted the
transition and send but denied the recv from the standard server (but note that
the server was allowed to accept the connection):

type=AVC msg=audit(1249742873.035:38): avc: granted { transition } for
pid=2987 comm="bash" path="/usr/local/bin/secure_client" dev=dm-0 ino=354307
scontext=user_u:unconfined_r:unconfined_t
tcontext=user_u:message_filter_r:ext_gateway_t tclass=process
type=SYSCALL msg=audit(1249742873.035:38): arch=40000003 syscall=11 success=yes
exit=0 a0=8801cf0 a1=87e9ca8 a2=87ee8e8 a3=0 items=0 ppid=2496 pid=2987 auid=0
uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=1
comm="secure_client" exe="/usr/local/bin/secure_client"
subj=user_u:message_filter_r:ext_gateway_t key=(null)

type=AVC msg=audit(1249742873.041:39): avc: granted { send } for pid=2987
comm="secure_client" saddr=127.0.0.1 src=35900 daddr=127.0.0.1 dest=9999
netif=lo scontext=user_u:message_filter_r:ext_gateway_t
tcontext=system_u:object_r:ext_gateway_packet_t tclass=packet
type=AVC msg=audit(1249742873.041:39): avc: denied { recv } for pid=2987
comm="secure_client" saddr=127.0.0.1 src=35900 daddr=127.0.0.1 dest=9999
netif=lo scontext=user_u:unconfined_r:unconfined_t
tcontext=system_u:object_r:ext_gateway_packet_t tclass=packet

Page 45

The SELinux Notebook - Sample Policy Source

The reader can experiment with the remaining scenarios to find if there are any holes
in the configuration.

3.2.2 Points to Note

3.2.2.1 Importance of Loading the iptables

The external gateway policy module relies on the fact that the iptables are loaded
correctly to label the network packets. If they are not loaded, or (for example) the
command:

iptables -t mangle –F

was allowed to be run that removes the mangle table entries, then the network packets
would be labeled with the initial SID default of unconfined_t. The result is of
course that all packets would be allowed. For example, running the
secure_client and standard server on port 9999 with no iptables loaded
would have the following audit.log entries (as all traffic on all ports would flow,
as no policy is being enforced):

type=AVC msg=audit(1247241956.542:32): avc: granted { transition } for
pid=2876 comm="bash" path="/usr/local/bin/secure_client" dev=dm-0 ino=354307
scontext=user_u:unconfined_r:unconfined_t
tcontext=user_u:message_filter_r:ext_gateway_t tclass=process
type=SYSCALL msg=audit(1247241956.542:32): arch=40000003 syscall=11 success=yes
exit=0 a0=9474a68 a1=947f460 a2=946d8e8 a3=0 items=0 ppid=2634 pid=2876 auid=0
uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=1
comm="secure_client" exe="/usr/local/bin/secure_client"
subj=user_u:message_filter_r:ext_gateway_t key=(null)

Compare this audit.log trail with those shown in Test 4 that was run using the
same scenario except that the iptables were loaded, thus denying the recv.

3.2.2.2 Running tests out of sequence

The server component allows files to be created in an ‘in queue’, and read / unlinked
for the ‘out queue’ when running the message filter test. However should the message
filter tests be run (see the Testing the Message Filter Build section) before the internal
gateway and file mover loadable modules are loaded, the following will be noted:

1. When running the unconfined client / server, files can be written (server
1234 in with client 127.0.0.1 1234), moved (move_file) and
then read / unlinked (server 1234 out with client 127.0.0.1
1234). This is because the base policy allows unconfined_t to do
anything it likes.

2. When running the secure client / server, files cannot be written to the ‘in
queue’ or read / unlinked from the ‘out queue’. This is because the
ext_gateway_t process does not have the required allow permissions to
do this.

Page 46

The SELinux Notebook - Sample Policy Source

3.3 Building the NetLabel Loadable Module
This simple module enables a NetLabel netlabel_peer_t label to be added to
the network connection to show that additional information at the peer level (as
secmark handles packet level labeling) can be added.

Because standard F-12 has the Policy Capabilities3 network_peer_controls set
to ‘0’, the full peer controls are not enabled, however the legacy implementation will
use the tcp_socket object class with the recvfrom permission to manage peer
labeling for this example.

For an example where the network_peer_controls is set to ‘1’, allowing the
use of the new controls see Appendix B – NetLabel Module Support for
network_peer_controls.

The following steps need to be followed to build the test services (it is assumed that
the files are built in the ./notebook-source/message-filter/netlabel
directory):

1. Ensure you are logged on as ‘root’ and SELinux is running in permissive
mode (setenforce 0) to perform the build process.

2. Download and install the NetLabel rpm as this is not included in the FC-12
build:

yum install netlabel_tools
yum will then install netlabel_tools

3. Produce a netlabel.conf loadable module file with a text editor (such as
vi or gedit) containing the contents shown below:

module netlabel 1.0.0;
#
##
#
This Loadable Module will allow the netlabels to be added and checked
within the client / server applications that form part of the SECMARK
test examples.
#
The following needs to happen to enable Netlabel to work as it is not
installed by default in F-12:
#
(1) Download and install netlabel_tools rpm (or equiv)
#
(2) Install this loadable module.
#
(3) Run the following netlabelctl command:
netlabelctl unlbl add interface:lo address:127.0.0.1 \
label:system_u:object_r:netlabel_peer_t
#
(4) Run netlabelctl -p unlbl list command to check all is okay.
#
(5) Run the secure and standard client/server that should now display
the netlabel_peer_t as the peer context.
#
Important note: F-12 does not support the latest netlabel services in
the kernel as:
/selinux/policy_capabilities/network_peer_controls = 0
#
The optional section is used when the internal gateway module is
loaded.
##

3 See the SELinux Filesystem section in 'The Foundations' volume.

Page 47

The SELinux Notebook - Sample Policy Source

#

require {
type ext_gateway_t, unconfined_t;
class tcp_socket { recvfrom };
}
type netlabel_peer_t;
type socket_t;

These are used when /selinux/policy_capabilities/network_peer_controls =
0
which is the default for F-12
allow ext_gateway_t netlabel_peer_t : tcp_socket recvfrom;
allow unconfined_t netlabel_peer_t : tcp_socket recvfrom;

#
##################### START OPTIONAL SECTION ###########################
#
optional {
require {

This is defined in the int_gateway.conf module:
type int_gateway_t;

}
allow int_gateway_t netlabel_peer_t : tcp_socket recvfrom;
}
#
######################## END OPTIONAL SECTION ###########################
#

4. Compile and install the module as follows:

checkmodule -m netlabel.conf -o netlabel.mod
semodule_package -o netlabel.pp -m netlabel.mod
semodule -v -s modular-test -i netlabel.pp

5. Run the following command to add the netlabel_peer_t label as
follows:

netlabelctl unlbl add interface:lo address:127.0.0.1 \
 label:system_u:object_r:netlabel_peer_t

6. Run enforcing mode:

setenforce 1

7. Run either the client / server or secure_client / secure_server applications as
shown in the SECMARK tests. There should now be a peer context displayed
as shown in Figure 3.4.

Page 48

The SELinux Notebook - Sample Policy Source

Figure 3.4: Running the secure client / server with NetLabel enabled

To remove the NetFilter label, the following command can be run:

netlabelctl unlbl del interface:lo address:127.0.0.1 \
label:system_u:object_r:netlabel_peer_t

3.4 Building the Remaining Message Filter Service
To complete the overall message filter shown in Figure 3.1, the internal gateway and
file mover applications and policy modules need to be built. These are explained in
this section plus how to test the modules via simple helper scripts. The source and
scripts are included in the source code rpm package.

The following will be built in this section:

1. The internal gateway policy module.

2. The file mover application.

3. The file mover policy module.

3.4.1 Internal Gateway Loadable Policy Module
This loadable module will apply policy rules for the internal gateway. The policy
applies dontaudit rules for those permissions known not to cause problems.

Page 49

The SELinux Notebook - Sample Policy Source

The following steps need to be followed to build the internal gateway module. It is
assumed that the services are installed in ./notebook-source/message-
filter/gateway:

1. Ensure you are logged on as ‘root’ and SELinux is running in permissive
mode (setenforce 0) to perform the build process.

2. Produce a int_gateway.conf file with a text editor (such as vi or
gedit) containing the contents shown below:

module int_gateway 1.1.0;

##
#
This Loadable Module will allow a simple Message Filter to be tested. #
#
The module is used with the base.conf that sets up the unconfined_t
space, the external_gateway.conf that manages the incoming data, and
the move_file.conf module that copies files from the in queue to the
out queue as explained in the SELinux Notebook.
This module can be built by:
checkmodule -m int_gateway.conf -o int_gateway.mod
semodule_package -o int_gateway.pp -m int_gateway.mod
semodule -v -s modular-test -i int_gateway.pp
#
The secure port for this internal gateway is 1111 and can only be
read/write by the secure client / server. The external gateway will
use port 9999 and can only be read/write by the secure client / server.#
Any other port can be read / write by the standard client / server.
#
The iptables_secmark script can be modified to other ports if required.#
WARNING - If the iptables are not loaded to label packets, ports etc.
then the standard client / server can use the secure ports.
#
Run setenforce 1, the policy can be tested using combinations of:
./server <port>
./secure_server <port>
#
./client <host> <port>
./secure_client <host> <port>
#
The module transitions to a role of message_filter_r simply to show
a role transition. To add the role to user_u the semanage command is
used as follows:
semanage user -m -R "message_filter_r unconfined_r" user_u
Note: Need to put in the unconfined_r role as semanage will remove it
from the current policy otherwise, causing much grief.
#
Note: To run the internal gateway the runcon command must be used.
This is because the external gateway has a type_transition statement:
type_transition unconfined_t secure_services_exec_t :
process ext_gateway_t;
AND the module linker will not allow two type_transition statements
using the secure_services_exec_t target with a different process type
i.e. There cannot be in the overall policy:
type_transition unconfined_t secure_services_exec_t :
process ext_gateway_t;
type_transition unconfined_t secure_services_exec_t :
process int_gateway_t;
#
Therefore run this as follows:
runcon -t int_gateway_t -r message_filter_r secure_server 9999
runcon -t int_gateway_t -r message_filter_r secure_client \
127.0.0.1 9999
#
##

require {
type unconfined_t, secure_services_exec_t;
role unconfined_r;
attribute message_filter_domains;
class packet { send recv relabelto };

Page 50

The SELinux Notebook - Sample Policy Source

class process { fork sigchld transition siginh rlimitinh noatsecure signal
};
class file { entrypoint read getattr execute relabelto unlink write create
};
class filesystem { getattr associate };
class chr_file { read write getattr };
class dir { read search getattr write add_name remove_name };
class fd use;
class lnk_file read;
class tcp_socket { write listen node_bind name_bind accept bind read
name_connect connect create getopt };
class association recvfrom;
class unix_stream_socket { create connect };
}

The internal gateway will run in this domain:
type int_gateway_t;

The internal gateway will have a SECMARK in the iptables of this label:
type int_gateway_packet_t;

Add the gateway domain to the attribute:
typeattribute int_gateway_t message_filter_domains;

Use message_filter_r role and role transition for the gateway:
role message_filter_r types int_gateway_t;
allow unconfined_r message_filter_r;
role_transition unconfined_r secure_services_exec_t message_filter_r;

Allow unconfined_t to relabel the secure ports. This is needed so that
iptables can be updated easily. Note: Against security policy, however
these need to be loaded at boot time when the policy is in enforcing
mode so no choice !!
allow unconfined_t int_gateway_packet_t : packet relabelto;

Allow gateway access only to secure ports:
allow int_gateway_t int_gateway_packet_t : packet { send recv };

Allow the internal gateway to transition to int_gateway_t. Note that the
type_transition statement is commented out and runcon is used to
transition this gateway (see the "Type Enforcement Rules" section of
the SELinux Notebook for gory details):
allow unconfined_t secure_services_exec_t : file { read execute getattr };
allow unconfined_t int_gateway_t : process { transition };
allow int_gateway_t secure_services_exec_t : file { entrypoint };
#type_transition unconfined_t secure_services_exec_t : process
int_gateway_t;

Stop segmentation faults
allow int_gateway_t unconfined_t : filesystem associate;
allow unconfined_t int_gateway_t : process noatsecure;
dontaudit unconfined_t int_gateway_t : process { siginh rlimitinh };

Need this in F-12 build to allow the client / server apps to exit:
allow unconfined_t int_gateway_t : process signal;

Allow int_gateway_t access to areas under unconfined_t domain:
allow int_gateway_t unconfined_t : packet { recv send };
allow int_gateway_t unconfined_t : chr_file { read write getattr };
allow int_gateway_t unconfined_t : dir search;
allow int_gateway_t unconfined_t : fd use;
allow int_gateway_t unconfined_t : filesystem getattr;
allow int_gateway_t unconfined_t : tcp_socket name_connect;
allow int_gateway_t unconfined_t : association recvfrom;
allow int_gateway_t self : dir search;
allow int_gateway_t self : tcp_socket { read create connect };

Need this in F-12 build to allow the client / server apps to exit:
allow int_gateway_t unconfined_t : process sigchld;
This was the F-10 statement:
dontaudit int_gateway_t unconfined_t : process sigchld;

For client and server to access the shared libc:
allow int_gateway_t unconfined_t : file { read getattr execute };
dontaudit int_gateway_t unconfined_t : dir { getattr };

Page 51

The SELinux Notebook - Sample Policy Source

allow int_gateway_t unconfined_t : lnk_file read;

Required if use host name instead of the IP address (e.g. localhost
instead of 127.0.0.1) in the client command line:
dontaudit int_gateway_t self : unix_stream_socket { create connect };

Required to get context information when using the libselinux api calls
getcon() and getpeercon():
allow int_gateway_t self : file read;
allow int_gateway_t self : tcp_socket getopt;

These entries are for the server only:
allow int_gateway_t self : tcp_socket { listen write accept bind };
allow int_gateway_t unconfined_t : tcp_socket { name_bind node_bind };

3. Compile the policy with checkmodule to produce an intermediate binary
policy file:

checkmodule -m int_gateway.conf -o int_gateway.mod

The output from the compilation should be:

checkmodule: loading policy configuration from base.conf
checkmodule: policy configuration loaded
checkmodule: writing binary representation (version 10) to base.mod

4. Package the policy with semodule_package, this will produce a policy
module file (note – if successful there are no output messages):

semodule_package -o int_gateway.pp -m int_gateway.mod

5. Install the loadable module with semodule (note – if successful there are no
output messages):

semodule -v -s modular-test -i int_gateway.pp

6. If there are no errors reported, then the loadable module has been added to the
policy store and loaded as a part of the policy. The policy module can be
checked by:

semodule -s modular-test -l

The results should be:

ext_gateway 1.0.0
int_gateway 1.0.0
netlabel 1.0.0

The file mover application will now be built.

3.4.2 File Move Application
This 'C' program will move files from one directory to another and works in
conjunction with the move_file.conf loadable module that will apply the policy
rules.

Page 52

The SELinux Notebook - Sample Policy Source

The following steps need to be followed to build the file move application and it is
assumed that the services are installed in ./notebook-source/message-
filter/move_file:

1. With an editor produce the move_file.c program as follows:

/**/
/* */
/* This is the file mover component for the Notebook demo modular policy. */
/* It moves the files created as a part of the SECMARK tests from the */
/* /usr/message_queue/in_queue to the /usr/message_queue/out_queue. */
/* The move_file.conf module ensures that the output queue files are */
/* correctly labeled out_file_t by an object type_transition. */
/* */
/* Copyright (C) 2009 Richard Haines */
/* */
/* This program is free software: you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* */
/**/
/* */
/* The move_file program is compiled as: */
/* gcc -o move_file move_file.c */
/* */
/* The move_file application can optionally be called with a timer value */
/* (in seconds) so that it can be run forever checking the in_queue */
/* every X seconds: move_file [timer] */
/* */
/* For the tests, the binary should be installed in /usr/local/bin and */
/* then the mk-dir script run to create the following directories: */
/* mkdir -p /usr/message_queue/in_queue */
/* mkdir -p /usr/message_queue/out_queue */
/* */
/* Install the move_file loadable module by: */
/* checkmodule -m move_file.conf -o move_file.mod */
/* semodule_package -o move_file.pp -m move_file.mod -f move_file.fc */
/* semodule -v -s modular-test -i move_file.pp */
/* */
/* Finally label the binary and message queue directories by: */
/* restorecon -r -f restorecon_move_file */
/* */
/* The server.c file describes how the files are are created etc. */
/* */
/**/
/* */
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <dirent.h>
#include <sys/types.h>
#include <sys/dir.h>
#include <sys/param.h>

#define MAXBUFFERSIZE 256

#define FALSE 0
#define TRUE !FALSE

extern int alphasort();

// variable to store current path
char in_path[] = "/usr/message_queue/in_queue";

Page 53

The SELinux Notebook - Sample Policy Source

char out_path[] = "/usr/message_queue/out_queue";

main (int argc, char *argv [])
{

FILE *fp1;
FILE *fp2;
char buffer [MAXBUFFERSIZE];
char in_file_name [MAXPATHLEN];
char out_file_name [MAXPATHLEN];
int timer, count, length, i;
struct direct **files;
int select_file();

// Use arg as the timer to use
if (argc == 2)

timer = atoi (argv [1]);
else

timer = 0;

while (TRUE) {
count = 0;
count = scandir (in_path, &files, select_file, alphasort);
printf ("Count = %d Timer = %d\n", count, timer);
if ((count <= 0 && timer == 0))

break;
else

sleep (timer);

for (i=1; i<count+1; ++i) {
// Build file name and clear the buffer
sprintf (in_file_name,"%s/%s", in_path, files [i-1]->d_name);
memset (buffer, 0, sizeof (buffer));

// Open INQ file
if ((fp1 = fopen (in_file_name, "r")) == 0) {

ferror (fp1);
exit (1);

}

/* Read Contents of File */
if (fread (buffer, sizeof (buffer), 1, fp1) != 0) {
ferror (fp1);
exit (1);
}

// Build output file name
sprintf (out_file_name,"%s/%s", out_path, files [i-1]-

>d_name);

// Open OUTQ file
if ((fp2 = fopen (out_file_name, "w")) == 0) {

ferror (fp2);
exit (1);

}

// Get buffer length
strcat (buffer, "(FILE MOVED TO OUT QUEUE)");
length = strlen (buffer);

// Write Contents of File
if (fwrite (buffer, length, 1, fp2) != 1) {

ferror (fp2);
exit (1);

}

unlink (in_file_name);
fclose (fp1);
fclose (fp2);

}
}

}

int select_file (struct direct *entry)
{

Page 54

The SELinux Notebook - Sample Policy Source

if ((strcmp (entry->d_name, ".") == 0) || (strcmp (entry->d_name, "..") ==
0))

return (FALSE);
else

return (TRUE);
}

2. Compile the move_file.c program:

gcc -o move_file move_file.c

3. Move the binary to /usr/local/bin:

mv move_file /usr/local/bin

To complete the message filter, the file mover loadable module will now be built.

3.4.3 File Mover Loadable Policy Module
This loadable module will allow a file to be moved from one directory to another
using the file mover application built above with minimum privileges. The policy
applies dontaudit rules for those permissions known not to cause problems.

Note that in the policy there is a statement that allows a counter to be displayed on the
console for testing purposes.

The following steps need to be followed to build the file mover module and it is
assumed that the services are installed in ./notebook-source/message-
filter/move_file:

1. Ensure you are logged on as ‘root’ and SELinux is running in permissive
mode (setenforce 0) to perform the build process.

2. Produce a move_file.conf file with a text editor (such as vi or gedit)
containing the contents shown below:

module move_file 1.1.0;

##
#
This Loadable Module will allow files to be moved from one directory
(or queue) to another using the move_file 'C' program with minimum
permissions. The policy applies dontaudit rules for those permissions #
known not to cause problems.
#
##

require {
role unconfined_r;
type unconfined_t;
attribute message_filter_domains;
class file { entrypoint getattr execute create read write unlink };
class dir { read search getattr write add_name remove_name };
class process { transition siginh noatsecure sigchld rlimitinh signal };
class fd use;
class chr_file { read write getattr };
class lnk_file read;
class filesystem associate;
}

Define type identifiers for the process / domain:
type move_file_t;
typeattribute move_file_t message_filter_domains;

Page 55

The SELinux Notebook - Sample Policy Source

Define the executable type:
type move_file_exec_t;

These are the file directory types:
type in_queue_t;
type out_queue_t;

These are the file types:
type in_file_t;
type out_file_t;

Use message_filter_r role and then allow role transition
role message_filter_r types { move_file_t };
allow unconfined_r message_filter_r;
role_transition unconfined_r move_file_exec_t message_filter_r;

Need permission for the program to transition:
allow unconfined_t move_file_t : process transition;
auditallow unconfined_t move_file_t : process transition;
allow unconfined_t move_file_exec_t : file { read execute getattr };
allow move_file_t move_file_exec_t : file { entrypoint };
type_transition unconfined_t move_file_exec_t : process move_file_t;

The move_file application reads then deletes the file:
type_transition move_file_t in_queue_t : file in_file_t;
allow move_file_t in_file_t : file { read unlink };
allow move_file_t in_queue_t : dir { read getattr search write remove_name
};
dontaudit move_file_t in_file_t : file getattr;

Need these if the files are labeled user_u:object_r:in_queue_t
This happens if restorecond is not running with setenforce 0 and use
vi to create the files for testing (as they are not relabeled)
allow move_file_t in_queue_t:file { read getattr unlink };

The move_file application then writes the file to the out queue:
type_transition move_file_t out_queue_t : file out_file_t;
allow move_file_t out_file_t : file { create write };
allow move_file_t out_queue_t : dir { search write add_name };
dontaudit move_file_t out_file_t : file getattr;

Do not need these:
HOWEVER - The move_file application has a printf with:
printf ("Count = %d Timer = %d\n", count, timer);
that can be seen on the console IF this allow is enabled:
allow move_file_t unconfined_t : chr_file { read write getattr };
OR it can be disabled from printing this on the console by:
dontaudit move_file_t unconfined_t : chr_file { read write getattr };

Need this in F-12 build to allow the app to exit:
allow unconfined_t move_file_t : process signal;
allow move_file_t unconfined_t : process sigchld;
This was the F-10 statement:
dontaudit move_file_t unconfined_t : process sigchld;

Need these as /usr/move_file dir is unconfined_t
allow move_file_t unconfined_t : dir search;
allow move_file_t unconfined_t : fd use;

Need these to run libc.so shared library
dontaudit move_file_t unconfined_t : dir getattr;
allow move_file_t unconfined_t : lnk_file read;
allow move_file_t unconfined_t : file { read getattr execute };

Need these to stop Segmentation faults
allow out_file_t unconfined_t : filesystem associate;
allow unconfined_t move_file_t : process noatsecure;
dontaudit unconfined_t move_file_t : process { siginh rlimitinh };

Don't need these:
dontaudit unconfined_t in_queue_t : dir { read getattr search };
dontaudit unconfined_t out_file_t : file getattr;

Page 56

The SELinux Notebook - Sample Policy Source

dontaudit unconfined_t out_queue_t : dir { read getattr search };
dontaudit unconfined_t in_file_t : file getattr;

3. Produce a move_file.fc file (a segment that will be added to
file_contexts file during the build) with the contents shown below. This
will be used to relabel application files and directories.

The Move File process makes use of two directory structures
(in & out) that are labeled as follows:

/usr/message_queue/in_queue -d system_u:object_r:in_queue_t
/usr/message_queue/out_queue -d system_u:object_r:out_queue_t

Ensure that any files are also relabeled:
/usr/message_queue/in_queue(/.*)? -- system_u:object_r:in_file_t
/usr/message_queue/out_queue(/.*)? -- system_u:object_r:out_file_t

The Move File 'C' application is labeled:
/usr/local/bin/move_file -- system_u:object_r:move_file_exec_t

4. Produce a restorecon_files file with the contents shown below. This
will be used by the restorecon command to relabel application files and
directories after any updates.

/usr/message_queue/in_queue
/usr/message_queue/out_queue
/usr/local/bin/move_file

5. Compile the policy with checkmodule to produce an intermediate binary
policy file:

checkmodule -m move_file.conf -o move_file.mod

The output from the compilation should be:

checkmodule: loading policy configuration from base.conf
checkmodule: policy configuration loaded
checkmodule: writing binary representation (version 8) to base.mod

6. Package the policy with semodule_package, this will produce a policy
module file (note – if successful there are no output messages):

semodule_package -o move_file.pp -m move_file.mod -f move_file.fc

7. Make the directories required by the application. These need to be created
because when semodule loads the policy, it will run setfiles to set the
file contexts correctly (using the contents of the move_file.fc file
produced in step 3).

mkdir -p /usr/message_queue/in_queue
mkdir -p /usr/message_queue/out_queue

8. Install the loadable module with semodule (note – if successful there are no
output messages):

semodule -v -s modular-test -i move_file.pp

Page 57

The SELinux Notebook - Sample Policy Source

9. If there are no errors reported, then the loadable module has been added to the
policy store and loaded as a part of the policy. The policy module can be
checked by:

semodule -s modular-test -l

The results should be:

ext_gateway 1.0.0
int_gateway 1.0.0
move_file 1.0.0
netlabel 1.0.0

10. Uncomment the internal gateway entries in the iptables file (./notebook-
source/message-filter/gateways/iptables_secmark) that was produced in step 13
of the Building the SECMARK Test Loadable Module section:

....
These are not required until using the internal gateway:
iptables -t mangle -A INPUT -i lo -p tcp --dport 1111 -j SECMARK --selctx
system_u:object_r:int_gateway_packet_t
iptables -t mangle -A INPUT -i lo -p tcp --sport 1111 -j SECMARK --selctx
system_u:object_r:int_gateway_packet_t
.....
....
#-------------- OUTPUT IP Stream --------------------#
....
#
These are not required until using the internal gateway:
iptables -t mangle -A OUTPUT -o lo -p tcp --dport 1111 -j SECMARK --selctx
system_u:object_r:int_gateway_packet_t
iptables -t mangle -A OUTPUT -o lo -p tcp --sport 1111 -j SECMARK --selctx
system_u:object_r:int_gateway_packet_t
....

11. Ensure all the files are correctly labeled by running the restorecon
command using the input file produced in step 4 above:

restorecon -r -f restorecon_file

12. Run enforcing mode:

setenforce 1

The message filter should now be ready to test.

3.4.4 Testing the Message Filter Build
To test the message filter it is recommended that four virtual terminal sessions are
opened (as shown in Figure 3.5) for:

1. Running the external gateway client as it will display status messages if
successful. This is shown on bottom left hand side using port 9999. Note that
this process is run directly from the command line by secure_server
9999 as it will automatically transition to the ext_gateway_t domain by
the policy rules.

Page 58

The SELinux Notebook - Sample Policy Source

1. Running the internal gateway client as it will display status messages if
successful.. This is shown on bottom right hand side using port 1111. Note
that this process (and the secure server for the internal gateway) has to be run
via the runcon command because of the type enforcement rules discussed in
the Type Enforcement Rules section of 'The Foundations' volume.

2. Running the servers as they display messages when connections are made with
the clients.

3. Viewing the audit log file. Note that the module has auditallow rules on
packet { send recv } so that these events can be seen. This is top left.

4. Starting and viewing the file mover application as this will be run to display a
count of the files being moved. This is top right.

Figure 3.5: Testing the message filter service
If there are four terminal sessions logged in as root as shown in Figure 3.5, then the
follow commands will need to be executed to show the message filter is working:

1. In the session that will display the audit log, execute the following command:

tail –f /var/log/audit/audit.log.

2. In a session run the following command to load the iptables (it is assumed
that the current directory is where the file is located):

./iptables_secmark

3. Each of the server processes for the gateways will be run in background using
one of the sessions with the following commands:

Page 59

The SELinux Notebook - Sample Policy Source

Start the external gateway in background with the ‘in’ argument
so that files are created in the in_queue with the
communications
traffic:

secure_server 9999 in &

Start the internal gateway in background using the runcon
command # with the ‘out’ argument so that files are read from the
out_queue:

runcon -t int_gateway_t -r message_filter_r secure_server 1111 out
&

4. In a session start the file mover application with a time in seconds argument so
that it will loop and display the number of files moved:

move_file 5

5. In a session start the secure external gateway client:

secure_client 127.0.0.1 9999

6. In a session start the secure internal gateway client using the runcon
command:

runcon -t int_gateway_t -r message_filter_r secure_client 127.0.0.1 1111

7. Keep repeating the client commands and the messages should be displayed in
each window as the clients are run.

If the external gateway client is run a number of times, the messages will be
read from the in_queue by the file mover and queued to the out_queue,
the internal gateway client can then be run to read each message off the
out_queue. The queues can be investigated for their context by using ls
-Z, however to do this, enforcing mode must be off otherwise
unconfined_t (that is the logon sessions domain) cannot read these areas.

Page 60

The SELinux Notebook - Sample Policy Source

4. Experimenting with X-Windows

4.1 Section Overview
The main objectives of this section are to:

1. Demonstrate the use of 'selections' using polyinstantiation and non-
polyinstantiation services of the XSELinux Object Manager (OM) with simple
Xlib simple select and paste applications.

2. Use the XSELinux OM SELinuxGet.. series of functions to display
various context information that is available while executing the select and
paste examples.

3. Build a simple menu driven test application that will allow all the
SELinuxGet/Set.. functions to be called and view the results.

It is recommended that the notebook-source-1.1.0-1.tar.gz file is
installed in $HOME as this contains all the configuration files and source code
required to produce the required modules (the file also contains README and simple
Makefiles).

This section assumes the following:

• The message filter modules have been removed before starting this exercise,
however it is not mandatory.

• SELinux is configured to use the modular-test policy in permissive mode
initially to build the services. The modular-test policy is decribed in the
Building the Base Policy Module section.

4.2 Overview of Modules and Applications
The loadable modules used to support these exercises are built using standard
SELinux language statements and rules with customised x_contexts files to
support the labeling of objects.

The test applications are written in 'C' and use the Xlib function library with Xdevice
functions provided by the Xi library. There were a few problems encountered that are
discussed in the Calling the XSELinux Functions section.

4.2.1 The x_contexts Files and Supporting Loadable Module
The source files required to build and manage the new x_contexts files and
supporting loadable module are located in:

./notebook-source/x-windows/x-contexts-base-module

As the objective of the demonstration is to show how different entries in the
x_contexts file affect the use of selections it was decided to build two
x_contexts files based on those in the Reference Policy 20090730 build. To
support the new entries created in these x_contexts files, required an additional
loadable module (x_context_base.conf).

Page 61

The SELinux Notebook - Sample Policy Source

The x_contexts files are expanded to give each entry a unique label so that it
could be detected in the audit log with audit2allow when in enforcing mode, a
decision could then be made as to whether an allow or dontaudit rule would be
added to the policy. Additional entries were also added just to experiment. A second
copy of the file was made that had the poly_ keyword added to the property and
selection entries to test polyinstantiation.

The only entry that caused problems during testing was the:

poly_property _XKB_RULES_NAMES

This entry had to have the poly_ keyword removed in the polyinstantiated file as it
stopped various keys from working (up/down etc. keys) on the keyboard.

The new x_contexts files generated are called:

x_contexts-file-with-new-labels - This file is similar to that used by
the reference policy. The select and paste policy uses the same method to manage
the labeling as the reference policy - called derived labeling as the objects label is
derived from an SELinux user name or a prefix (from the 'users_extra'
configuration file), then use a type_transition to transition the object to the
new label on creation. For example (using standard Refpolicy):

An x_contexts entry of:

event X11:MapNotify system_u:object_r:manage_xevent_t

and the ssh policy module (after expansion) having a type_transition
statement generated by the build process of:

type_transition ssh_t manage_xevent_t : x_event
 ssh_manage_xevent_t;

will relabel any objects created from manage_xevent_t to
ssh_manage_xevent_t.

x_contexts-file-with-new-polylabels - This is used to support
polyinstantiated entries (note - the reference policy does not currently use
polyinstantiated entries). With polyinstantiation enabled, the select and paste
policy uses the type_member rule to enforce the selection to a specific domain
(in this example the x_select_paste_t domain) as follows:

type_member x_select_paste_t primary_xselection_t :
x_selection
 x_select_paste_t;

To support these new x_contexts file entries an additional policy module was
built that defines a type for each entry and a corresponding allow rule. This
module is called x_context_base.conf and must be loaded and active when the
modular-test policy is loaded with either of the new x_contexts files. Failure
to do this will probably result in the system hanging as it tries to load X-Windows
with no defined type or allow rules for the new x_contexts file.

Page 62

The SELinux Notebook - Sample Policy Source

To experiment with additional x_context entries:

1) Add a new entry in the appropriate x_contexts file such as:

property WM_ZOOM_HINTS system_u:object_r:wm_zoom_hints_xproperty_t

 or

poly_property WM_ZOOM_HINTS system_u:object_r:wm_zoom_hints_xproperty_t

2) Add new entries in the x_context_base.conf for the type and allow
statements:

type wm_zoom_hints_xproperty_t;
allow unconfined_t wm_zoom_hints_xproperty_t : x_property
*;

3) Run the make module command (in the ./x-windows/x-contexts-
base-module directory) and copy over the appropriate x_contexts file
to /etc/selinux/modular-test/contexts.

4.2.2 The Select - Paste Applications and Loadable Module
The source files required to build and manage the application and loadable module are
located in:

./notebook-source/x-windows/x-select+paste

There are two simple X-Windows applications that select (X-select) and paste (X-
paste) “Hello World” using Xlib selection functions. When they are loaded they show
the application name and their context in the title bar as shown in Figure 4.1.
Integrated with these applications are calls to the XSELinuxGet.. functions to
return context information as the Xlib functions are executed.

Page 63

The SELinux Notebook - Sample Policy Source

The output from the applications can also be captured in a file by adding the capture
file name as an argument:

X-select poly-demo.txt

The output will be in poly-demo.txt, with some text also
displayed on the screen.

When the two applications are built they are moved to /usr/local/bin and have
the default label of unconfined_t. When they are both loaded in the
unconfined_t domain, there are no enforced rules (i.e. there are no restrictions). If
the x_select_paste.conf module is built and loaded, then when they are run
as:

runcon -t x_select_paste_t X-select

and

runcon -t x_select_paste_t X-paste

Policy will be enforced as required depending on a boolean that when set to:

setsebool -P poly-selection false

and the x_contexts-file-with-new-labels file is installed as the
x_contexts file, then the derived policy rules will be enforced.

If the boolean is set to:

Page 64

Figure 4.1: X-select and X-paste running in unconfined_t

The SELinux Notebook - Sample Policy Source

setsebool -P poly-selection true

and the x_contexts-file-with-new-polylabels file is installed as the
x_contexts file, then the polyinstantiated policy rules will be enforced.

4.2.2.1 Test Conclusions

After a number of experiments the following conclusions were reached:

1) Using the non-polyinstantiated x_contexts file (with poly-selection
= FALSE), resulted in selections being seen across all windows whether
running in unconfined_t or x_select_paste_t domains.

2) Using the polyinstantiated x_contexts file (with poly-selection =
TRUE), resulted in selections being restricted to windows running in their own
domains (e.g. if running the X-select in the unconfined_t domain and X-
paste in the x_select_paste_t domains, the selected text will not be
pasted).

3) If the following multiple selection entries are added to the x_contexts file,
then the non poly_ entry takes precedence. This means that polyinstantiation
for selections will not work (even if a different label is used for each entry).

The poly and non-poly entries cannot be in the x_contexts
file as the non-poly entry takes precedence:
poly_selection PRIMARY system_u:object_r:primary_xselection_t
selection PRIMARY system_u:object_r:primary_xselection_t

Even if different labels are used:
poly_selection PRIMARY system_u:object_r:poly_primary_xselection_t
selection PRIMARY system_u:object_r:primary_xselection_t

Therefore the overall conclusion is that for non-MLS policies, the only effective way
to control selections is using polyinstatiation with the type_member rule.

The reason for stating non-MLS policy is that the MLS policy uses mlsconstrain
rules to manage restrictions. Various constrain rules were used for non-MLS policy
testing but no satisfactory result could be obtained - do you know different !!!

Notes:

a) When using polyinstantiation the poly_ keyword must be present in the
x_contexts file and there must be a corresponding type_member rule in
the policy.

b) When analysing the output from the XSELinux function calls between non-
polyinstantiated (or derived) and polyinstantiated services when the X-select
and X-paste applications are running (apart from their context information),
the only major difference was that when calling the
SELinuxListSelections function, the polyinstantiated service had an
additional PRIMARY entry (shown in bold) as follows:

Non-polyinstantiated (derived) running in
x_select_paste_t:
#
Calling SELinuxListSelections (21) for this display:

Page 65

The SELinux Notebook - Sample Policy Source

SELinuxListSelections (1 of 10) - Atom: CLIPBOARD
Object Context: system_u:object_r:clipboard_xselection_t
Data Context: system_u:object_r:clipboard_xselection_t

SELinuxListSelections (2 of 10) - Atom: PRIMARY
Object Context: system_u:object_r:primary_xselection_t
Data Context: system_u:object_r:primary_xselection_t

Polyinstantiated running in x_select_paste_t:
Calling SELinuxListSelections (21) for this display:

SELinuxListSelections (1 of 11) - Atom: CLIPBOARD
Object Context: system_u:object_r:clipboard_xselection_t
Data Context: system_u:object_r:clipboard_xselection_t

SELinuxListSelections (2 of 11) - Atom: PRIMARY
Object Context: system_u:object_r:primary_xselection_t
Data Context: system_u:object_r:primary_xselection_t

SELinuxListSelections (3 of 11) - Atom: PRIMARY
Object Context: system_u:object_r:x_select_paste_t
Data Context: system_u:object_r:x_select_paste_t

c) The Reference Policy does not use polyinstantiation but supports isolation
only with the MLS policy where mlsconstrain rules are enforced (see the
mlsconstrain x_selection entries in the mls configuration file).

d) Various constrain rules were tried to limit selections with the non-
polyinstantiated x_contexts file, but no satisfactory solution was found -
any offers !!, therefore when using non-MLS policy, the only way to limit
selections is via polyinstantiation. Some example constrain rules tried that had
the following results:

Add constrain rule to base.conf:
constrain x_selection { read getattr } (t1 == unconfined_t);

When running "runcon -t x_select_paste_t X-paste" it flags the following
AVC entry in the Xorg.0.log file:
(WW) avc: denied { getattr } for request=X11:GetSelectionOwner comm=X-
paste selection=PRIMARY scontext=user_u:unconfined_r:x_select_paste_t
tcontext=system_u:object_r:primary_xselection_t tclass=x_selection

When running X-paste (in unconfined_t) then no errors in log.

Add constrain rule to base.conf:
constrain x_selection { read getattr } (t1 == secure_select);
Where secure_select is an attribute declared in base.conf

With the following added to x_select_paste.conf:
require { attribute secure_select; }
typeattribute x_select_paste_t secure_select;

When running "runcon -t x_select_paste_t X-paste" there are no errors in
the log.

When running X-paste (in unconfined_t) it flags the following AVC entry
in the Xorg.0.log file:

Page 66

The SELinux Notebook - Sample Policy Source

(WW) avc: denied { getattr } for request=X11:GetSelectionOwner comm=X-
paste selection=PRIMARY scontext=user_u:unconfined_r:unconfined_t
tcontext=system_u:object_r:primary_xselection_t tclass=x_selection

4.2.2.2 Calling the XSELinux Functions

The X-select, X-paste and X-setest applications call the object manager
XSELinuxGet/Set.. functions to get and set contexts as required. To use these
functions the standard Xlib GetReq, _XSend and _XReply functions need to be
called to manage the request / response sequences. As there are 23 functions it was
decided to build these into a separate 'C' module called
XSELinuxOMFunctions.c that is supported by a header file called Xlib-
selinux.h. that are located in the ./x-windows/x-common directory.

The header file is based on the XSELinux extension source header xselinux.h and
has been expanded to support the Xlib GetReq macro and associated functions. The
only point to note is that the SELinuxQueryVersion request header structure size
had to be set to 4 instead of 6 as the client_major and client_minor entries
were not used and caused errors when added.

The error handling caused much grief (as not an Xlib expert), and it will be seen that
there are a number of flags to indicate certain error sequences. The source code has
plenty of comments regarding these and if anyone has better methods let the author
know.

4.3 Building the X-Windows Select and Paste Examples
To build and test the infrastructure to support modified x_contexts files for the X-
Windows object manager, the following will be required:

a) The Base Module described in the Building the Base Policy Module section.
This will install the base policy module and supporting files in the
/etc/selinux/modular-test area.

b) Two modified x_contexts files. The Reference Policy sample has been
modified to capture additional entries and for each entry allocate its own
unique object label. There is one file to support the way the Reference Policy
(build 20090730) supports these objects4, and the other has the additional
'poly_' keyword added to support polyinstantiated property and selection
entries.

Important note - These sample x_contexts files must not be used with the
reference policy as they are incompatible and will cause the system to hang
when X-Windows is being loaded

c) A loadable module (x_context_base.conf) that contains the policy type
statements and allow rules of the newly defined x_contexts file entries
described in bullet b). This will allow the X-Windows object manager to load
the new x_contexts file without any errors.

4 Also known as 'derived type' because the objects are assigned labels that are derivied from a name
based on the SELinux user or a prefix (e.g. from the 'users_extra' configuration file) and then
uses a type_transition statement to transition the object to the new label on creation.

Page 67

The SELinux Notebook - Sample Policy Source

d) Two simple X-Windows applications - X-select to automatically select
some text (Hello World), and X-paste to paste the text onto the screen.
These applications use the minimum Xlib functions possible, however they
also contain calls to the SELinux X-Windows functions that are built into the
object manager to retrieve context information as the applications execute.

e) A loadable module (x_select_paste.conf) that contains the policy for
enforcing the X-select and X-paste applications when running in the
x_select_paste_t domain. This policy supports the polyinstantiated
x_contexts file by setting a boolean (poly-selection) to TRUE and
the the derived x_contexts file by setting the boolean to FALSE.

The build and testing will be carried out in the following stages:

1) Ensure that the modular-test base module has been built and tested as
described in the Building the Base Policy Module section.

2) Build the new x_contexts files and a loadable module
(x_context_base.conf). The files to are available in the source file and
located in the ./notebook-source/x-windows/x-contexts-
base-module directory.

3) Build the X-select, X-paste applications and their supporting loadable module
for running in the x_select_paste_t domain.

4) Install the derived (non-polyinstantiated) x_contexts file and test using the
X-select and X-paste applications in various scenarios using the
unconfined_t and x_select_paste_t domains, recording the results.

5) Install the polyinstantiated x_contexts file and test using the X-select and
X-paste applications in various scenarios using the unconfined_t and
x_select_paste_t domains, recording the results.

4.3.1 Building the x_contexts Files and Loadable Module
Before building and installing these, ensure that the modular-test base module
has been built, if it has proceed as follows:

1) Ensure you are logged on as ‘root’ and SELinux is running in permissive
mode (setenforce 0) to perform the build process. It is assumed that the
files are built in the ./notebook-source/x-windows/x-contexts-
base-module directory.

2) Produce a derived x_contexts file called x_contexts-file-with-
new-labels with the following entries:

#
Config file for XSELinux extension
#
##
#
Each entry in this file has a different label that is based on their
Object Name for testing a basic policy that is explained in:
The SELinux Notebook - The Foundations
#
This version (x_contexts-base.conf-new-labels) does not have
polyinstantiated entries. For testing X polyinstantiated objects, use

Page 68

The SELinux Notebook - Sample Policy Source

the x_contexts-base.conf-new-polylabels file.
#
##
#

Rules for X Clients
The default client rule defines a context to be used for all clients
connecting to the server from a remote host.
#
client * system_u:object_r:remote_xclient_t

Rules for X Properties
Property rules map a property name to a context. A default property
rule indicated by an asterisk should follow all other property rules.
#
Properties that normal clients may only read
property XFree86_VT system_u:object_r:xfree86_vt_xproperty_t
property XFree86_DDC_EDID1_RAWDATA
system_u:object_r:xfree86_ddc_edid1_rawdata_xproperty_t
property RESOURCE_MANAGER system_u:object_r:resource_manager_xproperty_t
property SCREEN_RESOURCES system_u:object_r:screen_resources_xproperty_t
property _MIT_PRIORITY_COLORS
system_u:object_r:mit_priority_colors_xproperty_t
property AT_SPI_IOR system_u:object_r:at_spi_ior_xproperty_t
property _SELINUX_CLIENT_CONTEXT
system_u:object_r:selinux_client_context_xproperty_t
property _NET_WORKAREA system_u:object_r:net_workarea_xproperty_t
Need to remove poly_property from this as it stops some keys working on
keyboard !!!
property _XKB_RULES_NAMES
system_u:object_r:xkb_rules_names_xproperty_t

Clipboard and selection properties
property CUT_BUFFER0 system_u:object_r:cut_buffer0_xproperty_t
property CUT_BUFFER1 system_u:object_r:cut_buffer1_xproperty_t
property CUT_BUFFER2 system_u:object_r:cut_buffer2_xproperty_t
property CUT_BUFFER3 system_u:object_r:cut_buffer3_xproperty_t
property CUT_BUFFER4 system_u:object_r:cut_buffer4_xproperty_t
property CUT_BUFFER5 system_u:object_r:cut_buffer5_xproperty_t
property CUT_BUFFER6 system_u:object_r:cut_buffer6_xproperty_t
property CUT_BUFFER7 system_u:object_r:cut_buffer7_xproperty_t

Don't really need these as if not defined they will default to the
Default fallback type below.
Added these as they are used by the XSetWMProperties function call:
property WM_NAME system_u:object_r:wm_name_xproperty_t
property WM_ICON_NAME system_u:object_r:wm_incon_name_xproperty_t
property WM_HINTS system_u:object_r:wm_hints_xproperty_t
property WM_NORMAL_HINTS system_u:object_r:wm_normal_hints_xproperty_t
property WM_CLASS system_u:object_r:wm_class_xproperty_t
property WM_COMMAND system_u:object_r:wm_command_xproperty_t
property WM_CLIENT_MACHINE system_u:object_r:wm_client_machine_xproperty_t

Add XA_STRING:
property STRING system_u:object_r:string_xproperty_t

As each Window has its own properties it is important to make sure
the undefined_xproperty_t is transitioned to the correct type when
building a module that uses 'derived' types (see x_derived_test.conf).
Default fallback type
property * system_u:object_r:undefined_xproperty_t

Rules for X Extensions
Extension rules map an extension name to a context. A default extension
rule indicated by an asterisk should follow all other extension rules.
#
Standard extensions
extension BIG-REQUESTS system_u:object_r:big-requests_xextension_t
extension SHAPE system_u:object_r:shape_xextension_t
extension SYNC system_u:object_r:sync_xextension_t
extension XC-MISC system_u:object_r:xc-misc_xextension_t
extension XFIXES system_u:object_r:xfixes_xextension_t
extension XInputExtension system_u:object_r:xinputextension_xextension_t
extension XKEYBOARD system_u:object_r:xkeyboard_xextension_t
extension DAMAGE system_u:object_r:damage_xextension_t

Page 69

The SELinux Notebook - Sample Policy Source

extension RENDER system_u:object_r:render_xextension_t
extension XINERAMA system_u:object_r:xinerama_xextension_t

Direct hardware access extensions
extension XFree86-DGA system_u:object_r:xfree86-dga_xextension_t
extension XFree86-VidModeExtension system_u:object_r:xfree86-
vidmodeextension_xextension_t

Screen management and multihead extensions
extension RANDR system_u:object_r:randr_xextension_t
extension Composite system_u:object_r:composite_xextension_t

Screensaver, power management extensions
extension DPMS system_u:object_r:dpms_xextension_t
extension MIT-SCREEN-SAVER system_u:object_r:mit-screen-saver_xextension_t

Shared memory extensions
extension MIT-SHM system_u:object_r:mit-shm_xextension_t
extension XFree86-Bigfont system_u:object_r:xfree86-bigfont_xextension_t

Accelerated graphics, OpenGL, direct rendering extensions
extension GLX system_u:object_r:glx_xextension_t
extension NV-CONTROL system_u:object_r:nv-control_xextension_t
extension NV-GLX system_u:object_r:nv-glx_xextension_t
extension NVIDIA-GLX system_u:object_r:nvidia-glx_xextension_t

Debugging, testing, and recording extensions
extension RECORD system_u:object_r:record_xextension_t
extension X-Resource system_u:object_r:x-resource_xextension_t
extension XTEST system_u:object_r:xtest_xextension_t

Security-related extensions
extension SECURITY system_u:object_r:security_xextension_t
extension SELinux system_u:object_r:selinux_xextension_t
extension XAccessControlExtension
system_u:object_r:xaccesscontrolextension_xextension_t
extension XC-APPGROUP system_u:object_r:xc-appgroup_xextension_t

Video extensions
extension XVideo system_u:object_r:xvideo_xextension_t
extension XVideo-MotionCompensation system_u:object_r:xvideo-
motioncompensation_xextension_t

Default fallback type
extension * system_u:object_r:undefined_xextension_t

Rules for X Selections
Selection rules map a selection name to a context. A default selection
rule indicated by an asterisk should follow all other selection rules.
#
Polyinstantiated entries
Standard selections
selection XA_PRIMARY system_u:object_r:xa_primary_xselection_t
selection XA_SECONDARY system_u:object_r:xa_secondary_xselection_t
selection PRIMARY system_u:object_r:primary_xselection_t
selection CLIPBOARD system_u:object_r:clipboard_xselection_t

Default fallback type
selection * system_u:object_r:undefined_xselection_t

Rules for X Events
Event rules map an event protocol name to a context. A default event
rule indicated by an asterisk should follow all other event rules.
#
Input events
event X11:KeyPress system_u:object_r:x11_keypress_xevent_t
event X11:KeyRelease system_u:object_r:x11_keyrelease_xevent_t
event X11:ButtonPress system_u:object_r:x11_buttonpress_xevent_t
event X11:ButtonRelease system_u:object_r:x11_buttonrelease_xevent_t
event X11:MotionNotify system_u:object_r:x11_motionnotify_xevent_t
event X11:SelectionNotify system_u:object_r:x11_selectionnotify_xevent_t
Added two additional selection events:
event X11:SelectionRequest system_u:object_r:x11_selectionrequest_xevent_t
event X11:SelectionClear system_u:object_r:x11_selectionclear_xevent_t

Page 70

The SELinux Notebook - Sample Policy Source

event XInputExtension:DeviceKeyPress
system_u:object_r:xinputextension_devicekeypress_xevent_t
event XInputExtension:DeviceKeyRelease
system_u:object_r:xinputextension_devicekeyrelease_xevent_t
event XInputExtension:DeviceButtonPress
system_u:object_r:xinputextension_devicebuttonpress_xevent_t
event XInputExtension:DeviceButtonRelease
system_u:object_r:xinputextension_devicebuttonrelease_xevent_t
event XInputExtension:DeviceMotionNotify
system_u:object_r:xinputextensionext_devicemotionnotify_xevent_t
event XInputExtension:DeviceValuator
system_u:object_r:xinputextension_devicevaluator_xevent_t
event XInputExtension:ProximityIn
system_u:object_r:xinputextension_proximityin_xevent_t
event XInputExtension:ProximityOut
system_u:object_r:xinputextension_proximityout_xevent_t

Focus events
event X11:FocusIn system_u:object_r:x11_foucusin_xevent_t
event X11:FocusOut system_u:object_r:x11_focusout_xevent_t
event X11:EnterNotify system_u:object_r:x11_enternotify_xevent_t
event X11:LeaveNotify system_u:object_r:x11_leavenotify_xevent_t

Property events
event X11:PropertyNotify system_u:object_r:x11_propertynotify_xevent_t

Client message events
event X11:ClientMessage system_u:object_r:x11_clientmessage_xevent_t

Manager events
event X11:ConfigureRequest system_u:object_r:x11_configurerequest_xevent_t
event X11:ResizeRequest system_u:object_r:x11_resizerequest_xevent_t
event X11:MapRequest system_u:object_r:x11_maprequest_xevent_t
event X11:CirculateRequest system_u:object_r:x11_circulaterequest_xevent_t
event X11:CreateNotify system_u:object_r:x11_createnotify_xevent_t
event X11:DestroyNotify system_u:object_r:x11_destroynotify_xevent_t
event X11:MapNotify system_u:object_r:x11_mapnotify_xevent_t
event X11:UnmapNotify system_u:object_r:x11_unmapnotify_xevent_t
event X11:ReparentNotify system_u:object_r:x11_reparentnotify_xevent_t
event X11:ConfigureNotify system_u:object_r:x11_confignotify_xevent_t
event X11:GravityNotify system_u:object_r:x11_gravitynotify_xevent_t
event X11:CirculateNotify system_u:object_r:x11_circulatenotify_xevent_t
event X11:Expose system_u:object_r:x11_expose_xevent_t
event X11:VisibilityNotify system_u:object_r:x11_visibilitynotify_xevent_t

Unknown events (that are not registered in the X server's name database)
event <unknown> system_u:object_r:unknown_xevent_t

Default fallback type
event * system_u:object_r:undefined_xevent_t

3) Produce a polyinstantiated x_contexts file called x_contexts-file-
with-new-polylabels. Not all entries are shown in the file below as the
easiest way to produce this is to copy the x_contexts file above and add
the 'poly_' keyword to the property and selection entries as follows:

#
Config file for XSELinux extension
#
##
#
Each entry in this file has a different label that is based on their
Object Name for testing a basic policy that is explained in:
The SELinux Notebook - The Foundations
#
This version (x_contexts-base.conf-new-polylabels) does not have
polyinstantiated entries. For testing X non-polyinstantiated objects,
use the x_contexts-base.conf-new-labels file.
#
##
#
#

Page 71

The SELinux Notebook - Sample Policy Source

##
Rules for X Clients
.....
.....

Rules for X Properties
Property rules map a property name to a context. A default property
rule indicated by an asterisk should follow all other property rules.
#
Polyinstantiated entries
Properties that normal clients may only read
poly_property XFree86_VT system_u:object_r:xfree86_vt_xproperty_t
poly_property XFree86_DDC_EDID1_RAWDATA
system_u:object_r:xfree86_ddc_edid1_rawdata_xproperty_t
poly_property RESOURCE_MANAGER
system_u:object_r:resource_manager_xproperty_t
poly_property SCREEN_RESOURCES
system_u:object_r:screen_resources_xproperty_t
poly_property _MIT_PRIORITY_COLORS
system_u:object_r:mit_priority_colors_xproperty_t
poly_property AT_SPI_IOR system_u:object_r:at_spi_ior_xproperty_t
poly_property _SELINUX_CLIENT_CONTEXT
system_u:object_r:selinux_client_context_xproperty_t
poly_property _NET_WORKAREA
system_u:object_r:net_workarea_xproperty_t
Need to remove poly_property from this as it stops some keys working on
keyboard !!!
property _XKB_RULES_NAMES
system_u:object_r:xkb_rules_names_xproperty_t

Clipboard and selection properties
poly_property CUT_BUFFER0 system_u:object_r:cut_buffer0_xproperty_t
poly_property CUT_BUFFER1 system_u:object_r:cut_buffer1_xproperty_t
poly_property CUT_BUFFER2 system_u:object_r:cut_buffer2_xproperty_t
poly_property CUT_BUFFER3 system_u:object_r:cut_buffer3_xproperty_t
poly_property CUT_BUFFER4 system_u:object_r:cut_buffer4_xproperty_t
poly_property CUT_BUFFER5 system_u:object_r:cut_buffer5_xproperty_t
poly_property CUT_BUFFER6 system_u:object_r:cut_buffer6_xproperty_t
poly_property CUT_BUFFER7 system_u:object_r:cut_buffer7_xproperty_t

Don't really need these as if not defined they will default to the
Default fallback type below.
Added these as they are used by the XSetWMProperties function call:
poly_property WM_NAME system_u:object_r:wm_name_xproperty_t
poly_property WM_ICON_NAME system_u:object_r:wm_incon_name_xproperty_t
poly_property WM_HINTS system_u:object_r:wm_hints_xproperty_t
poly_property WM_NORMAL_HINTS
system_u:object_r:wm_normal_hints_xproperty_t
poly_property WM_CLASS system_u:object_r:wm_class_xproperty_t
poly_property WM_COMMAND system_u:object_r:wm_command_xproperty_t
poly_property WM_CLIENT_MACHINE
system_u:object_r:wm_client_machine_xproperty_t

Add XA_STRING:
poly_property STRING system_u:object_r:string_xproperty_t

As each Window has its own properties it is important to make sure
the undefined_xproperty_t is transitioned to the correct type when
building a module that uses 'derived' types (see x_derived_test.conf).
Default fallback type
poly_property * system_u:object_r:undefined_xproperty_t

Rules for X Extensions
.....
......

Rules for X Selections
Selection rules map a selection name to a context. A default selection
rule indicated by an asterisk should follow all other selection rules.
#
Polyinstantiated entries
Standard selections
poly_selection XA_PRIMARY system_u:object_r:xa_primary_xselection_t
poly_selection XA_SECONDARY system_u:object_r:xa_secondary_xselection_t
poly_selection PRIMARY system_u:object_r:primary_xselection_t

Page 72

The SELinux Notebook - Sample Policy Source

poly_selection CLIPBOARD system_u:object_r:clipboard_xselection_t

Default fallback type
poly_selection * system_u:object_r:undefined_xselection_t

Rules for X Events
....
......

4) Produce the x_context_base.conf policy file with the following
contents:

module x_context_base 1.0.0;
#
##
#
This Loadable Module will allow the X-Windows OM to label objects
using the sample x_contexts files that form part of the test examples:
x_contexts-file-with-new-labels
x_contexts-file-with-new-polylabels
#
##
#

require {
type unconfined_t;
class x_property { create destroy read write append getattr setattr };
class x_selection { read write getattr setattr };
class x_extension { query use };
class x_event { send receive };
class x_synthetic_event { send receive };

}

#
########################## START TYPES ##########################
#
The default client rule defines a context to be used for all clients
connecting to the server from a remote host.
#
type remote_xclient_t;

Rules for X Properties
Property rules map a property name to a context. A default property
rule indicated by an asterisk should follow all other property rules.
#
Properties that normal clients may only read
type xfree86_vt_xproperty_t;
type xfree86_ddc_edid1_rawdata_xproperty_t;
type resource_manager_xproperty_t;
type screen_resources_xproperty_t;
type mit_priority_colors_xproperty_t;
type at_spi_ior_xproperty_t;
type selinux_client_context_xproperty_t;
type net_workarea_xproperty_t;
type xkb_rules_names_xproperty_t;

Clipboard and selection properties
type cut_buffer0_xproperty_t;
type cut_buffer1_xproperty_t;
type cut_buffer2_xproperty_t;
type cut_buffer3_xproperty_t;
type cut_buffer4_xproperty_t;
type cut_buffer5_xproperty_t;
type cut_buffer6_xproperty_t;
type cut_buffer7_xproperty_t;

Added these as they are used by the XSetWMProperties function call:
type wm_name_xproperty_t;
type wm_incon_name_xproperty_t;
type wm_hints_xproperty_t;
type wm_normal_hints_xproperty_t;
type wm_class_xproperty_t;
type wm_command_xproperty_t;

Page 73

The SELinux Notebook - Sample Policy Source

type wm_client_machine_xproperty_t;

Add XA_STRING:
type string_xproperty_t;

Default fallback type
type undefined_xproperty_t;

Rules for X Extensions
Extension rules map an extension name to a context. A default extension
rule indicated by an asterisk should follow all other extension rules.
#
Standard extensions
type big-requests_xextension_t;
type shape_xextension_t;
type sync_xextension_t;
type xc-misc_xextension_t;
type xfixes_xextension_t;
type xinputextension_xextension_t;
type xkeyboard_xextension_t;
type damage_xextension_t;
type render_xextension_t;
type xinerama_xextension_t;

Direct hardware access extensions
type xfree86-dga_xextension_t;
type xfree86-vidmodeextension_xextension_t;

Screen management and multihead extensions
type randr_xextension_t;
type composite_xextension_t;

Screensaver, power management extensions
type dpms_xextension_t;
type mit-screen-saver_xextension_t;

Shared memory extensions
type mit-shm_xextension_t;
type xfree86-bigfont_xextension_t;

Accelerated graphics, OpenGL, direct rendering extensions
type glx_xextension_t;
type nv-control_xextension_t;
type nv-glx_xextension_t;
type nvidia-glx_xextension_t;

Debugging, testing, and recording extensions
type record_xextension_t;
type x-resource_xextension_t;
type xtest_xextension_t;

Security-related extensions
type security_xextension_t;
type selinux_xextension_t;
type xaccesscontrolextension_xextension_t;
type xc-appgroup_xextension_t;

Video extensions
type xvideo_xextension_t;
type xvideo-motioncompensation_xextension_t;

Default fallback type
type undefined_xextension_t;

Rules for X Selections
Selection rules map a selection name to a context. A default selection
rule indicated by an asterisk should follow all other selection rules.
#
Standard selections
type xa_primary_xselection_t;
type xa_secondary_xselection_t;
type primary_xselection_t;
type clipboard_xselection_t;

Default fallback type

Page 74

The SELinux Notebook - Sample Policy Source

type undefined_xselection_t;

Rules for X Events
Event rules map an event protocol name to a context. A default event
rule indicated by an asterisk should follow all other event rules.
#
Input events
type x11_keypress_xevent_t;
type x11_keyrelease_xevent_t;
type x11_buttonpress_xevent_t;
type x11_buttonrelease_xevent_t;
type x11_motionnotify_xevent_t;
type x11_selectionnotify_xevent_t;
type xinputextension_devicekeypress_xevent_t;
type xinputextension_devicekeyrelease_xevent_t;
type xinputextension_devicebuttonpress_xevent_t;
type xinputextension_devicebuttonrelease_xevent_t;
type xinputextensionext_devicemotionnotify_xevent_t;
type xinputextension_devicevaluator_xevent_t;
type xinputextension_proximityin_xevent_t;
type xinputextension_proximityout_xevent_t;

Focus events
type x11_foucusin_xevent_t;
type x11_focusout_xevent_t;
type x11_enternotify_xevent_t;
type x11_leavenotify_xevent_t;

Property events
type x11_propertynotify_xevent_t;
Added two additional selection events:
type x11_selectionrequest_xevent_t;
type x11_selectionclear_xevent_t;

Client message events
type x11_clientmessage_xevent_t;

Manager events
type x11_configurerequest_xevent_t;
type x11_resizerequest_xevent_t;
type x11_maprequest_xevent_t;
type x11_circulaterequest_xevent_t;
type x11_createnotify_xevent_t;
type x11_destroynotify_xevent_t;
type x11_mapnotify_xevent_t;
type x11_unmapnotify_xevent_t;
type x11_reparentnotify_xevent_t;
type x11_confignotify_xevent_t;
type x11_gravitynotify_xevent_t;
type x11_circulatenotify_xevent_t;
type x11_expose_xevent_t;
type x11_visibilitynotify_xevent_t;

Unknown events (that are not registered in the X server's name database)
type unknown_xevent_t;

Default fallback type
type undefined_xevent_t;

#
########################### END TYPES ##########################
#

#
##################### START ALLOW RULES ########################
#

#
The default client rule defines a context to be used for all clients
connecting to the server from a remote host.
#
Does not need an allow rule as no remote clients
remote_xclient_t;

Rules for X Properties

Page 75

The SELinux Notebook - Sample Policy Source

Property rules map a property name to a context. A default property
rule indicated by an asterisk should follow all other property rules.
#
Properties that normal clients may only read
allow unconfined_t xfree86_vt_xproperty_t : x_property *;
allow unconfined_t xfree86_ddc_edid1_rawdata_xproperty_t : x_property *;
allow unconfined_t resource_manager_xproperty_t : x_property *;
allow unconfined_t screen_resources_xproperty_t : x_property *;
allow unconfined_t mit_priority_colors_xproperty_t : x_property *;
allow unconfined_t at_spi_ior_xproperty_t : x_property *;
allow unconfined_t selinux_client_context_xproperty_t : x_property *;
allow unconfined_t net_workarea_xproperty_t : x_property *;
allow unconfined_t xkb_rules_names_xproperty_t : x_property *;

Clipboard and selection properties
allow unconfined_t cut_buffer0_xproperty_t : x_property *;
allow unconfined_t cut_buffer1_xproperty_t : x_property *;
allow unconfined_t cut_buffer2_xproperty_t : x_property *;
allow unconfined_t cut_buffer3_xproperty_t : x_property *;
allow unconfined_t cut_buffer4_xproperty_t : x_property *;
allow unconfined_t cut_buffer5_xproperty_t : x_property *;
allow unconfined_t cut_buffer6_xproperty_t : x_property *;
allow unconfined_t cut_buffer7_xproperty_t : x_property *;

Added these as they are used by the XSetWMProperties function call:
allow unconfined_t wm_name_xproperty_t : x_property *;
allow unconfined_t wm_incon_name_xproperty_t : x_property *;
allow unconfined_t wm_hints_xproperty_t : x_property *;
allow unconfined_t wm_normal_hints_xproperty_t : x_property *;
allow unconfined_t wm_class_xproperty_t : x_property *;
allow unconfined_t wm_command_xproperty_t : x_property *;
allow unconfined_t wm_client_machine_xproperty_t : x_property *;

Add XA_STRING:
allow unconfined_t string_xproperty_t : x_property *;

Default fallback type
allow unconfined_t undefined_xproperty_t : x_property *;

Rules for X Extensions
Extension rules map an extension name to a context. A default extension
rule indicated by an asterisk should follow all other extension rules.
#
Standard extensions
allow unconfined_t big-requests_xextension_t : x_extension *;
allow unconfined_t shape_xextension_t : x_extension *;
allow unconfined_t sync_xextension_t : x_extension *;
allow unconfined_t xc-misc_xextension_t : x_extension *;
allow unconfined_t xfixes_xextension_t : x_extension *;
allow unconfined_t xinputextension_xextension_t : x_extension *;
allow unconfined_t xkeyboard_xextension_t : x_extension *;
allow unconfined_t damage_xextension_t : x_extension *;
allow unconfined_t render_xextension_t : x_extension *;
allow unconfined_t xinerama_xextension_t : x_extension *;

Direct hardware access extensions
allow unconfined_t xfree86-dga_xextension_t : x_extension *;
allow unconfined_t xfree86-vidmodeextension_xextension_t : x_extension *;

Screen management and multihead extensions
allow unconfined_t randr_xextension_t : x_extension *;
allow unconfined_t composite_xextension_t : x_extension *;

Screensaver, power management extensions
allow unconfined_t dpms_xextension_t : x_extension *;
allow unconfined_t mit-screen-saver_xextension_t : x_extension *;

Shared memory extensions
allow unconfined_t mit-shm_xextension_t : x_extension *;
allow unconfined_t xfree86-bigfont_xextension_t : x_extension *;

Accelerated graphics, OpenGL, direct rendering extensions
allow unconfined_t glx_xextension_t : x_extension *;
allow unconfined_t nv-control_xextension_t : x_extension *;
allow unconfined_t nv-glx_xextension_t : x_extension *;

Page 76

The SELinux Notebook - Sample Policy Source

allow unconfined_t nvidia-glx_xextension_t : x_extension *;

Debugging, testing, and recording extensions
allow unconfined_t record_xextension_t : x_extension *;
allow unconfined_t x-resource_xextension_t : x_extension *;
allow unconfined_t xtest_xextension_t : x_extension *;

Security-related extensions
allow unconfined_t security_xextension_t : x_extension *;
allow unconfined_t selinux_xextension_t : x_extension *;
allow unconfined_t xaccesscontrolextension_xextension_t : x_extension *;
allow unconfined_t xc-appgroup_xextension_t : x_extension *;

Video extensions
allow unconfined_t xvideo_xextension_t : x_extension *;
allow unconfined_t xvideo-motioncompensation_xextension_t : x_extension *;

Default fallback type
allow unconfined_t undefined_xextension_t : x_extension *;

Rules for X Selections
Selection rules map a selection name to a context. A default selection
rule indicated by an asterisk should follow all other selection rules.
#
Standard selections
allow unconfined_t xa_primary_xselection_t : x_selection *;
allow unconfined_t xa_secondary_xselection_t : x_selection *;
allow unconfined_t primary_xselection_t : x_selection *;
allow unconfined_t clipboard_xselection_t : x_selection *;

Default fallback type
allow unconfined_t undefined_xselection_t : x_selection *;

Rules for X Events
Event rules map an event protocol name to a context. A default event
rule indicated by an asterisk should follow all other event rules.
#
Input events
allow unconfined_t x11_keypress_xevent_t : x_event *;
allow unconfined_t x11_keyrelease_xevent_t : x_event *;
allow unconfined_t x11_buttonpress_xevent_t : x_event *;
allow unconfined_t x11_buttonrelease_xevent_t : x_event *;
allow unconfined_t x11_motionnotify_xevent_t : x_event *;
allow unconfined_t x11_selectionnotify_xevent_t : x_synthetic_event *;
allow unconfined_t xinputextension_devicekeypress_xevent_t : x_event *;
allow unconfined_t xinputextension_devicekeyrelease_xevent_t : x_event *;
allow unconfined_t xinputextension_devicebuttonpress_xevent_t : x_event *;
allow unconfined_t xinputextension_devicebuttonrelease_xevent_t : x_event *;
allow unconfined_t xinputextensionext_devicemotionnotify_xevent_t : x_event
*;
allow unconfined_t xinputextension_devicevaluator_xevent_t : x_event *;
allow unconfined_t xinputextension_proximityin_xevent_t : x_event *;
allow unconfined_t xinputextension_proximityout_xevent_t : x_event *;

Focus events
allow unconfined_t x11_foucusin_xevent_t : x_event *;
allow unconfined_t x11_focusout_xevent_t : x_event *;
allow unconfined_t x11_enternotify_xevent_t : x_event *;
allow unconfined_t x11_leavenotify_xevent_t : x_event *;

Property events
allow unconfined_t x11_propertynotify_xevent_t : x_event *;
Added two additional selection events:
allow unconfined_t x11_selectionrequest_xevent_t : x_event *;
allow unconfined_t x11_selectionclear_xevent_t : x_event *;

Client message events
allow unconfined_t x11_clientmessage_xevent_t : x_synthetic_event *;

Manager events
allow unconfined_t x11_configurerequest_xevent_t : x_event *;
allow unconfined_t x11_resizerequest_xevent_t : x_event *;
allow unconfined_t x11_maprequest_xevent_t : x_event *;
allow unconfined_t x11_circulaterequest_xevent_t : x_event *;
allow unconfined_t x11_createnotify_xevent_t : x_event *;

Page 77

The SELinux Notebook - Sample Policy Source

allow unconfined_t x11_destroynotify_xevent_t : x_event *;
allow unconfined_t x11_mapnotify_xevent_t : x_event *;
allow unconfined_t x11_unmapnotify_xevent_t : x_synthetic_event *;
allow unconfined_t x11_unmapnotify_xevent_t : x_event *;
allow unconfined_t x11_reparentnotify_xevent_t : x_event *;
allow unconfined_t x11_confignotify_xevent_t : x_synthetic_event *;
allow unconfined_t x11_confignotify_xevent_t : x_event *;
allow unconfined_t x11_gravitynotify_xevent_t : x_event *;
allow unconfined_t x11_circulatenotify_xevent_t : x_event *;
allow unconfined_t x11_expose_xevent_t : x_event *;
allow unconfined_t x11_visibilitynotify_xevent_t : x_event *;

Unknown events (that are not registered in the X server's name database)
allow unconfined_t unknown_xevent_t : x_event *;

Default fallback type
allow unconfined_t undefined_xevent_t : x_event *;

#
##################### END ALLOW RULES ########################
#

5) Compile, package and load the module as follows:

checkmodule -m x_context_base.conf -o x_context_base.mod
semodule_package -o x_context_base.pp -m x_context_base.mod
semodule -v -s modular-test -i x_context_base.pp

Use the semodule command to check the module has loaded as follows:

semodule -l
x_context_base 1.0.0

6) Copy the derived x_contexts-file-with-new-labels to the
modular-test policy area as the new x_contexts file:

cp x_contexts-file-with-new-labels
 /etc/selinux/modular-test/contexts/x_contexts

7) Optionally clear the log file so that they are clear for easier reading after the
reboot:

> /var/log/audit/audit.log

8) Ensure that SELinux is configured to run in permissive mode with the
modular-test policy enabled, then reboot the system to ensure X-
windows loads the new x_contexts file entries.

reboot

The system should reload with no errors, however if the screen should remain blank
then the chances are that the x_contexts file is incorrect and the repair disk will be
required to replace the x_contexts file with the one produced in the Building the
Base Policy Module section. Alternatively, reboot with a know good policy and check
the modular-test policy x_contexts entries.

Run the setenforce 1 command and then check the audit log for USER_AVC
errors (there should not be any errors).

Page 78

The SELinux Notebook - Sample Policy Source

Note that the x_contexts file currently loaded is the standard (non-poly) version.

4.3.2 Building the X-select and X-paste Applications
Before building and installing these applications, ensure that the libraries and
development packages have been installed.

The easiest way to build these applications is to use the notebook-source files (the X-
select and X-paste code is in the ./notebook-source/x-windows/x-
select+paste directory). The code to manage the XSELinux functions is quite
long and also requires a header file (these are contained in the ./notebook-
source/x-windows/x-common directory). The source files also contain a pre-
compiled set of applications that only need to be copied to /usr/local/bin.
However to build from scratch proceed as follows:

1. Ensure you are logged on as ‘root’ and SELinux is running in permissive
mode (setenforce 0) to perform the build process. It is assumed that the
applications will be built in the ./notebook-source/x-windows/x-
select+paste directory, but the XSELinux function call code will be in
the ./notebook-source/x-windows/x-common directory as it is
shared by the X-setest application as well.

2. In the ./notebook-source/x-windows/x-common directory,
produce the Xlib-selinux.h header file with the following entries:

/**/
/* */
/* The X_SELinux function headers for the Notebook X-Windows demos. */
/* */
/* Copyright (C) 2010 Richard Haines */
/* */
/* Note that the X_SELinux function Request and Reply structure */
/* definitions have been taken from the XSELinux object manager source. */
/* */
/* This program is free software: you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* */
/**/

/* Extension protocol IDs (struct entry for req->SELinuxReqType) */
#define X_SELinuxQueryVersion 0
#define X_SELinuxSetDeviceCreateContext 1
#define X_SELinuxGetDeviceCreateContext 2
#define X_SELinuxSetDeviceContext 3
#define X_SELinuxGetDeviceContext 4
#define X_SELinuxSetWindowCreateContext 5
#define X_SELinuxGetWindowCreateContext 6
#define X_SELinuxGetWindowContext 7
#define X_SELinuxSetPropertyCreateContext 8
#define X_SELinuxGetPropertyCreateContext 9
#define X_SELinuxSetPropertyUseContext 10
#define X_SELinuxGetPropertyUseContext 11
#define X_SELinuxGetPropertyContext 12
#define X_SELinuxGetPropertyDataContext 13

Page 79

The SELinux Notebook - Sample Policy Source

#define X_SELinuxListProperties 14
#define X_SELinuxSetSelectionCreateContext 15
#define X_SELinuxGetSelectionCreateContext 16
#define X_SELinuxSetSelectionUseContext 17
#define X_SELinuxGetSelectionUseContext 18
#define X_SELinuxGetSelectionContext 19
#define X_SELinuxGetSelectionDataContext 20
#define X_SELinuxListSelections 21
#define X_SELinuxGetClientContext 22

/**/
/* Define SELinux structures for Extension requests & responses and the */
/* structure sizes (used by the SIZEOF macro in Xmd.h) */
/**/

// The structure defined in the XSELinux Object Manager
// source (./Xext/xselinux.h) seems wrong as this one works:
typedef struct {
 CARD8 reqType;
 CARD8 SELinuxReqType;
 CARD16 length;
// CARD8 client_major;
// CARD8 client_minor;
} xSELinuxQueryVersionReq;
// #define sz_xSELinuxQueryVersionReq 6
#define sz_xSELinuxQueryVersionReq 4

typedef struct {
 CARD8 type;
 CARD8 pad1;
 CARD16 sequenceNumber;
 CARD32 length;
 CARD16 server_major;
 CARD16 server_minor;
 CARD32 pad2;
 CARD32 pad3;
 CARD32 pad4;
 CARD32 pad5;
 CARD32 pad6;
} xSELinuxQueryVersionReply;
#define sz_xSELinuxQueryVersionReply 32

typedef struct {
 CARD8 reqType;
 CARD8 SELinuxReqType;
 CARD16 length;
 CARD32 context_len;
} xSELinuxSetCreateContextReq;
#define sz_xSELinuxSetCreateContextReq 8

typedef struct {
 CARD8 reqType;
 CARD8 SELinuxReqType;
 CARD16 length;
} xSELinuxGetCreateContextReq;
#define sz_xSELinuxGetCreateContextReq 4

typedef struct {
 CARD8 reqType;
 CARD8 SELinuxReqType;
 CARD16 length;
 CARD32 id;
 CARD32 context_len;
} xSELinuxSetContextReq;
#define sz_xSELinuxSetContextReq12

typedef struct {
 CARD8 reqType;
 CARD8 SELinuxReqType;
 CARD16 length;
 CARD32 id;
} xSELinuxGetContextReq;
#define sz_xSELinuxGetContextReq8

typedef struct {

Page 80

The SELinux Notebook - Sample Policy Source

 CARD8 reqType;
 CARD8 SELinuxReqType;
 CARD16 length;
 CARD32 window;
 CARD32 property;
} xSELinuxGetPropertyContextReq;
#define sz_xSELinuxGetPropertyContextReq 12

typedef struct {
 CARD8 type;
 CARD8 pad1;
 CARD16 sequenceNumber;
 CARD32 length;
 CARD32 context_len;
 CARD32 pad2;
 CARD32 pad3;
 CARD32 pad4;
 CARD32 pad5;
 CARD32 pad6;
} xSELinuxGetContextReply;
#define sz_xSELinuxGetContextReply 32

typedef struct {
 CARD8 type;
 CARD8 pad1;
 CARD16 sequenceNumber;
 CARD32 length;
 CARD32 count;
 CARD32 pad2;
 CARD32 pad3;
 CARD32 pad4;
 CARD32 pad5;
 CARD32 pad6;
} xSELinuxListItemsReply;
#define sz_xSELinuxListItemsReply 32

// These are for Get Selection & Property Lists

typedef struct {
 CARD32 name; // Atom name
 CARD32 object_context_len;
 CARD32 data_context_len; // Context
} xSELinuxListItem;
#define sz_xSELinuxListItem 12

// This one holds the list information but needs to be a link list at some
stage
typedef struct {

CARD32 atom_name;
CARD32 object_context_len;
CARD32 data_context_len;
char object_context [100];
char data_context [100];

} xSELinuxListItemEntry;

/**/
/* */
/* This section defines for each function call: */
/* 1) typedefs to form the structure names in line with Xproto.h */
/* rules. */
/* 2) Defines structure sizes so that SIZEOF macro (defined in Xmd.h) */
/* can work when calling GetReq (); */
/* */
/**/

// X_SELinuxQueryVersion = 0
// No typedef or sz_ are required as they are defined at the start of this
// header file as they are exclusive to X_SELinuxQueryVersion, whereas the
// rest (functions1 - 22) need typedef and sz_ define's as they use
// common structures.

// X_SELinuxSetDeviceCreateContext = 1
typedef xSELinuxSetCreateContextReq xSELinuxSetDeviceCreateContextReq;

Page 81

The SELinux Notebook - Sample Policy Source

#define sz_xSELinuxSetDeviceCreateContextReq
sz_xSELinuxSetCreateContextReq

// the context is in a char buffer that is sent as additional data by _XSend

// X_SELinuxGetDeviceCreateContext = 2
typedef xSELinuxGetCreateContextReq xSELinuxGetDeviceCreateContextReq;
typedef xSELinuxGetContextReply xSELinuxGetDeviceCreateContextReply;
#define sz_xSELinuxGetDeviceCreateContextReq

sz_xSELinuxGetCreateContextReq
#define sz_xSELinuxGetDeviceCreateContextReply sz_xSELinuxGetContextReply

// X_SELinuxSetDeviceContext = 3
typedef xSELinuxSetContextReq xSELinuxSetDeviceContextReq;
#define sz_xSELinuxSetDeviceContextReq sz_xSELinuxSetContextReq

// X_SELinuxGetDeviceContext = 4
typedef xSELinuxGetContextReq xSELinuxGetDeviceContextReq;
typedef xSELinuxGetContextReply xSELinuxGetDeviceContextReply;
#define sz_xSELinuxGetDeviceContextReq sz_xSELinuxGetContextReq
#define sz_xSELinuxGetDeviceContextReply sz_xSELinuxGetContextReply

// X_SELinuxSetWindowCreateContext = 5
typedef xSELinuxSetCreateContextReq xSELinuxSetWindowCreateContextReq;
#define sz_xSELinuxSetWindowCreateContextReq

sz_xSELinuxSetCreateContextReq

// X_SELinuxGetWindowCreateContext = 6
typedef xSELinuxGetCreateContextReq xSELinuxGetWindowCreateContextReq;
typedef xSELinuxGetContextReply xSELinuxGetWindowCreateContextReply;
#define sz_xSELinuxGetWindowCreateContextReq

sz_xSELinuxGetCreateContextReq
#define sz_xSELinuxGetWindowCreateContextReply sz_xSELinuxGetContextReply

// X_SELinuxGetWindowContext = 7
typedef xSELinuxGetContextReq xSELinuxGetWindowContextReq;
typedef xSELinuxGetContextReply xSELinuxGetWindowContextReply;
#define sz_xSELinuxGetWindowContextReq sz_xSELinuxGetContextReq
#define sz_xSELinuxGetWindowContextReply sz_xSELinuxGetContextReply

// X_SELinuxSetPropertyCreateContext = 8
typedef xSELinuxSetCreateContextReq xSELinuxSetPropertyCreateContextReq;
#define sz_xSELinuxSetPropertyCreateContextReq

sz_xSELinuxSetCreateContextReq

// X_SELinuxGetPropertyCreateContext = 9
typedef xSELinuxGetCreateContextReq

xSELinuxGetPropertyCreateContextReq;
typedef xSELinuxGetContextReply

xSELinuxGetPropertyCreateContextReply;
#define sz_xSELinuxGetPropertyCreateContextReq

sz_xSELinuxGetCreateContextReq
#define sz_xSELinuxGetPropertyCreateContextReply

sz_xSELinuxGetContextReply

// X_SELinuxSetPropertyUseContext = 10
typedef xSELinuxSetCreateContextReq xSELinuxSetPropertyUseContextReq;
#define sz_xSELinuxSetPropertyUseContextReq sz_xSELinuxSetCreateContextReq

// X_SELinuxGetPropertyUseContext = 11
typedef xSELinuxGetCreateContextReq xSELinuxGetPropertyUseContextReq;
typedef xSELinuxGetContextReply xSELinuxGetPropertyUseContextReply;
#define sz_xSELinuxGetPropertyUseContextReq sz_xSELinuxGetCreateContextReq
#define sz_xSELinuxGetPropertyUseContextReply sz_xSELinuxGetContextReply

// X_SELinuxGetPropertyContext = 12 (the req struct has already been
declared)
// typedef xSELinuxGetPropertyContextReq xSELinuxGetPropertyContextReq;
typedef xSELinuxGetContextReply xSELinuxGetPropertyContextReply;
#define sz_xSELinuxGetPropertyContextReply sz_xSELinuxGetContextReply

// X_SELinuxGetPropertyDataContext = 13
typedef xSELinuxGetPropertyContextReq

xSELinuxGetPropertyDataContextReq;
typedef xSELinuxGetContextReply xSELinuxGetPropertyDataContextReply;

Page 82

The SELinux Notebook - Sample Policy Source

#define sz_xSELinuxGetPropertyDataContextReq
sz_xSELinuxGetPropertyContextReq

#define sz_xSELinuxGetPropertyDataContextReply sz_xSELinuxGetContextReply

// X_SELinuxListProperties = 14
typedef xSELinuxGetContextReq xSELinuxListPropertiesReq;
typedef xSELinuxListItemsReply xSELinuxListPropertiesReply;
#define sz_xSELinuxListPropertiesReq sz_xSELinuxGetContextReq
#define sz_xSELinuxListPropertiesReply sz_xSELinuxListItemsReply

// X_SELinuxSetSelectionCreateContext = 15
typedef xSELinuxSetCreateContextReq

xSELinuxSetSelectionCreateContextReq;
#define sz_xSELinuxSetSelectionCreateContextReq

sz_xSELinuxSetCreateContextReq

// X_SELinuxGetSelectionCreateContext = 16
typedef xSELinuxGetCreateContextReq

xSELinuxGetSelectionCreateContextReq;
typedef xSELinuxGetContextReply

xSELinuxGetSelectionCreateContextReply;
#define sz_xSELinuxGetSelectionCreateContextReq

sz_xSELinuxGetCreateContextReq
#define sz_xSELinuxGetSelectionCreateContextReply

sz_xSELinuxGetContextReply

// X_SELinuxSetSelectionUseContext = 17
typedef xSELinuxSetCreateContextReq xSELinuxSetSelectionUseContextReq;
#define sz_xSELinuxSetSelectionUseContextReq

sz_xSELinuxSetCreateContextReq

// X_SELinuxGetSelectionUseContext = 18
typedef xSELinuxGetCreateContextReq xSELinuxGetSelectionUseContextReq;
typedef xSELinuxGetContextReply xSELinuxGetSelectionUseContextReply;
#define sz_xSELinuxGetSelectionUseContextReq

sz_xSELinuxGetCreateContextReq
#define sz_xSELinuxGetSelectionUseContextReply sz_xSELinuxGetContextReply

// X_SELinuxGetSelectionContext = 19
typedef xSELinuxGetContextReq xSELinuxGetSelectionContextReq;
typedef xSELinuxGetContextReply xSELinuxGetSelectionContextReply;
#define sz_xSELinuxGetSelectionContextReq sz_xSELinuxGetContextReq
#define sz_xSELinuxGetSelectionContextReply sz_xSELinuxGetContextReply

// X_SELinuxGetSelectionDataContext = 20
typedef xSELinuxGetContextReq xSELinuxGetSelectionDataContextReq;
typedef xSELinuxGetContextReply

xSELinuxGetSelectionDataContextReply;
#define sz_xSELinuxGetSelectionDataContextReq sz_xSELinuxGetContextReq
#define sz_xSELinuxGetSelectionDataContextReplysz_xSELinuxGetContextReply

// X_SELinuxListSelections = 21
typedef xSELinuxGetCreateContextReq xSELinuxListSelectionsReq;
typedef xSELinuxListItemsReply xSELinuxListSelectionsReply;
#define sz_xSELinuxListSelectionsReq sz_xSELinuxGetCreateContextReq
#define sz_xSELinuxListSelectionsRepy sz_xSELinuxListItemsReply

// X_SELinuxGetClientContext = 22
typedef xSELinuxGetContextReq xSELinuxGetClientContextReq;
typedef xSELinuxGetContextReply xSELinuxGetClientContextReply;
#define sz_xSELinuxGetClientContextReq sz_xSELinuxGetContextReq
#define sz_xSELinuxGetClientContextReply sz_xSELinuxGetContextReply

3. In the ./notebook-source/x-windows/x-common directory,
produce the XSELinuxOMFunctions.c source file with the following
entries:

/**/
/* */
/* These are the XSELinux functions for the Notebook X-Windows demos. */
/* They are used to retrieve contexts and add them as required for the */
/* X-Windows Object Manager test examples. */

Page 83

The SELinux Notebook - Sample Policy Source

/* */
/* Note that the XError handling could be improved by using the */
/* appropriate X functions, however the current set-up seems to work ok. */
/* (even though a bit messy). */
/* */
/* Copyright (C) 2010 Richard Haines */
/* */
/* This program is free software: you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* */
/**/

#include <X11/Xlib.h>
#include <X11/Xlibint.h>

#include <errno.h>

#include <stdio.h>
#include "Xlib-selinux.h"

#define ENFORCING 1

// Declare the function that will plug the _XReply Error handler.
// This would normally be called first when sending X_SELinux..
// functions to the X-server. The CatchXErrorHandler() is then
// called meaning that the error message will be flagged twice.
// The catchXreplyErrorHandlerFlag stops reporting it for the
// second time.
int CatchXreplyErrorHandler (); // Declare the function

// Declare the function that will plug the XError handler when we use
// the X_SELinuxSet... functions to set a security context. Need to plug
// this or the default handler will just exit displaying the generic Xerror.
int CatchXErrorHandler ();

// This flag is used to indicate that an XError has already been detected
// and displayed using the CatchXreplyErrorHandler() function that will
// set it to xTrue. The CatchXErrorHandler() function will ignore the error
// then set this flag to xFalse.
static int catchXreplyErrorHandlerFlag = xFalse;

// Have this flag for functions 12, 13, 19, 20 & 22 to detect "Access
Denied"
// errors. This is set to xTrue before the _XReply is actioned in these
// functions with the CatchXErrorHandler() and XReplyError() functions
// setting it to xFalse.
//
// An AVC message is generated for "Access Denied", however the 12, 13,
// 19, 20 & 22 functions return an errno with BadAlloc set (as failed
// to allocate a SID ???).
// I think an Access Denied should generate an XError of BadAccess (16).
//
// What seems to happen for Access Denied is that the functions 12, 13, 19,
// 20 & 22 _XReply fails via the "if (! _Xreply ...)" statement with -1
// (even though this has been plugged by the CatchXreplyErrorHandler).
// The failure will call the XReplyError() function that will check various
// flags such as "enforcing mode", then generate an "Access Denied" message
// if required.
//
static int checkAccessDeniedFlag = xFalse;

static const char *functionCodes [] = {
"SELinuxQueryVersion (0)",

Page 84

The SELinux Notebook - Sample Policy Source

"SELinuxSetDeviceCreateContext (1)",
"SELinuxGetDeviceCreateContext (2)",
"SELinuxSetDeviceContext (3)",
"SELinuxGetDeviceContext (4)",
"SELinuxSetWindowCreateContext (5)",
"SELinuxGetWindowCreateContext (6)",
"SELinuxGetWindowContext (7)",
"SELinuxSetPropertyCreateContext (8)",
"SELinuxGetPropertyCreateContext (9)",
"SELinuxSetPropertyUseContext (10)",
"SELinuxGetPropertyUseContext (11)",
"SELinuxGetPropertyContext (12)",
"SELinuxGetPropertyDataContext (13)",
"SELinuxListProperties (14)",
"SELinuxSetSelectionCreateContext (15)",
"SELinuxGetSelectionCreateContext (16)",
"SELinuxSetSelectionUseContext (17)",
"SELinuxGetSelectionUseContext (18)",
"SELinuxGetSelectionContext (19)",
"SELinuxGetSelectionDataContext (20)",
"SELinuxListSelections (21)",
"SELinuxGetClientContext (22)"
};

// This is global and used by the various test prgrams
int X_SELinuxExtensionOpcode;

// This global handle will be used to output the information from the
// functions. It would be stdout or a file.
extern FILE *outputPtr;

// The CatchXErrorHandler function captures any errors when any of
// the XLib functions are called. This allows XErrors to be captured
// and displayed, then let the application continue to run (as the
// normal XError handler would just display the error and exit.
// Note that the errors are only displayed if they have not been
// previously displayed by the CatchXreplyErrorHandler() function.
//
int CatchXErrorHandler (Display *dpy, XErrorEvent *error)
{
//printf ("CatchXErrorHandler()\n");

if (catchXreplyErrorHandlerFlag == xFalse) {
// Got here because of an XLib XError detected with no corresponding
_XReply
// error, so just display a general error message with all the gory details
// and then give some detail on ones that have been seen to give an idea why
// they failed (only seen invalid context so far when using the ..Set..
// functions with invalid context info).

if (error->request_code == X_SELinuxExtensionOpcode) {
switch (error->error_code) {

case BadValue: // 2
fprintf (outputPtr, "%s returned BadValue - could be invalid

context\n", functionCodes [error->minor_code]);
break;

case BadLength: // 16
fprintf (outputPtr, "%s returned BadLength - could be context

= NULL\n", functionCodes [error->minor_code]);
break;

default:
fprintf (outputPtr, "%s returned an XError: %d\n",

functionCodes [error->minor_code], error->error_code);
break;

}
} else

fprintf (outputPtr, "Detected XError: %d for Major opcode: %d
Minor opcode: %d With ResourceID: %d\n", error->error_code, error-
>request_code, error->minor_code, error->resourceid);

}
catchXreplyErrorHandlerFlag = xFalse;
checkAccessDeniedFlag = xFalse;

Page 85

The SELinux Notebook - Sample Policy Source

return 1;
}

// This function catches _XReply errors (but NOT the "if (! _XReply ..) -1
// failures) and displays a message. The CatchXErrorHandler() handler is
always
// called next so the catchXreplyErrorHandlerFlag is set to xTrue so the
error
// is not reported twice. The xError struct is defined in Xproto.h
//
int CatchXreplyErrorHandler (Display *dpy, xError *err, XExtCodes *codes,
int *ret_code)
{
//printf ("CatchXreplyErrorHandler()\n");

catchXreplyErrorHandlerFlag = xTrue;

fprintf (outputPtr, "The %s function returned an _XReply error:\n",
functionCodes [err->minorCode]);

if (outputPtr != stdout)
printf ("The %s function returned an _XReply error: %d\n",

functionCodes [err->minorCode], err->errorCode);

switch (err->errorCode) {
case BadRequest: // 1

fprintf (outputPtr, "BadRequest - An invalid SELinux function
call\n");

break;

case BadValue: // 2
fprintf (outputPtr, "BadValue - Lookup failed for resourceID: %d

(could also be invalid context)\n", err->resourceID);
break;

case BadWindow: // 3
fprintf (outputPtr, "BadWindow - Check WindowID: %d\n", err-

>resourceID);
break;

case BadMatch: // 8

fprintf (outputPtr, "BadMatch - Lookup failed for resourceID: %d\n",
err->resourceID);

break;

case BadAccess: // 10
fprintf (outputPtr, "BadAccess - Lookup failed for resourceID: %d\n",

err->errorCode, err->resourceID);
break;

case BadAlloc: // 11
fprintf (outputPtr, "BadAlloc - Generally allocation of resourceID:

%d\n", err->resourceID);
break;

case BadLength: // 16
fprintf (outputPtr, "BadLength - A context is the wrong length

(resourceID: %d)\n", err->resourceID);
break;

default:
fprintf (outputPtr, "_XReply XError: %d ResourceID: %d\n", err-

>errorCode, err->resourceID);
break;

}
return 0;

}

// Need this function as:
// Always seem to get the BadAlloc message (or is it EAGAIN ?) in errno when
// _XReply fails via the "if (! _Xreply ...)" statement with -1 even though
// this has been plugged by the CatchXreplyErrorHandler.
// However the only case where it seems to be relevant is when obtaining the
// security context of a client (func 22) or Atoms (funcs 12, 13, 19 & 20)

Page 86

The SELinux Notebook - Sample Policy Source

// when in enforcing mode and access is not allowed. Therefore have this bit
of
// code that checks various bits. See the checkAccessDeniedFlag comments
above.
//
int XReplyError (Display *dpy, int minorOpcode)
{

if (errno != BadAlloc) { // or is it EAGAIN ???
fprintf (outputPtr, "The %s function _XReply returned errno: %d\n",

functionCodes [minorOpcode], errno);
if (outputPtr != stdout)

printf ("The %s function _XReply returned errno: %d\n",
functionCodes [minorOpcode], errno);

UnlockDisplay (dpy);
SyncHandle ();
return (0);

}

// Use this to check the error return from an _XReply as BadAlloc means
access
// denied when in enforcing mode for functions 12, 13 & 22.

if ((security_getenforce () == ENFORCING) && (checkAccessDeniedFlag ==
xTrue)) {

fprintf (outputPtr, "The BadAlloc error in Enforcing Mode
means \"Access Denied\"\n");

if (outputPtr != stdout)
printf ("The BadAlloc error in Enforcing Mode means \"Access

Denied\"\n");
UnlockDisplay (dpy);
SyncHandle ();
checkAccessDeniedFlag = xFalse;
return (0);

}
else {

//// To stop screen clutter don't display the error for errno == BadAlloc as
//// already caught by the XError handler anyway.
// fprintf (outputPtr, "The %s function _XReply returned errno: %d\n",
functionCodes [minorOpcode], errno);
// if (outputPtr != stdout)
// printf ("The %s function _XReply returned errno: %d\n",
functionCodes [minorOpcode], errno);

UnlockDisplay (dpy);
SyncHandle ();
return (0);

}
}

/**/
/* */
/* START XSELinux FUNCTIONS */
/* These are the X_SELinux functions that are called by the various test */
/* programs. This could be written as a library service with better */
/* handling of the X_SELinuxExtensionOpcode and FILE *outputPtr stuff. */
/* */
/**/

// SELinuxQueryVersion = 0 - This function has the wrong
// xSELinuxQueryVersionReq size. See Xlib-selinux.h
SELinuxQueryVersion (Display *dpy)
{
xSELinuxQueryVersionReq *req;
xSELinuxQueryVersionReply rep;

LockDisplay (dpy);
GetReq (SELinuxQueryVersion, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxQueryVersion;
if (!_XReply (dpy, (xReply *)&rep, 0, xTrue)) {

XReplyError (dpy, X_SELinuxQueryVersion);
return (-1);

}
UnlockDisplay (dpy);
SyncHandle ();

Page 87

The SELinux Notebook - Sample Policy Source

fprintf (outputPtr, "SELinuxQueryVersion - Major Version: %d Minor
Version: %d\n", rep.server_major, rep.server_minor);
}

// Get the SELinuxSetDeviceCreateContext = 1
SELinuxSetDeviceCreateContext (Display *dpy, char * buffer)
{
xSELinuxSetDeviceCreateContextReq *req;
long nbytes;

fprintf (outputPtr, "SELinuxSetDeviceCreateContext - Setting Context:
%s\n", buffer);

LockDisplay (dpy);
GetReq (SELinuxSetDeviceCreateContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxSetDeviceCreateContext;
nbytes = req->context_len = strlen (buffer);
req->length += (nbytes + 3) >> 2; /* round up to mult of 4 */
_XSend (dpy, buffer, nbytes); // Can use _XSend or Data as no difference

//Data (dpy, buffer, nbytes);

// This function does not specify a reply, however we need to check that
// the context given is valid, This is done on the next X call, so using
// XSynchronize() to force a return (as _XFlush() does not do this as
// the buffer is clear anyway). If an error is detected, then it goes
// to our CaptureXErrorHandler() function that gives a message and
// allows the function to continue. I'm sure there is a better way
// to do this but !!!
//_XFlush (dpy);

XSynchronize (dpy, xTrue);
UnlockDisplay (dpy);
SyncHandle ();
XSynchronize (dpy, xFalse);

}

// SELinuxGetDeviceCreateContext = 2
SELinuxGetDeviceCreateContext (Display *dpy)
{
xSELinuxGetDeviceCreateContextReq *req;
xSELinuxGetDeviceCreateContextReply rep;
char deviceContext [100];

LockDisplay (dpy);
GetReq (SELinuxGetDeviceCreateContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxGetDeviceCreateContext;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxGetDeviceCreateContext);
return (-1);

}

if (rep.context_len == 0)
fprintf (outputPtr, "SELinuxGetDeviceCreateContext - No Context

available\n");
else {

_XReadPad (dpy, deviceContext, rep.context_len);
fprintf (outputPtr, "SELinuxGetDeviceCreateContext - Context: %s\n",

deviceContext);
}
UnlockDisplay (dpy);
SyncHandle ();

}

// Get the SELinuxSetDeviceCreateContext = 3
SELinuxSetDeviceContext (Display *dpy, char * buffer, long device_id)
{
xSELinuxSetDeviceContextReq *req;
long nbytes;

Page 88

The SELinux Notebook - Sample Policy Source

fprintf (outputPtr, "SELinuxSetDeviceContext - Setting Context: %s for
Device ID %d\n", buffer, device_id);

LockDisplay (dpy);
GetReq (SELinuxSetDeviceContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxSetDeviceContext;
req->id = device_id;
nbytes = req->context_len = strlen(buffer);
req->length += (nbytes + 3) >> 2; /* round up to mult of 4 */

//_XSend (dpy, buffer, nbytes);
Data (dpy, buffer, nbytes);

// See the SELinuxSetDeviceCreateContext() function for the reason why
// the XSynchronize() functions are called.

XSynchronize (dpy, xTrue);
UnlockDisplay (dpy);
SyncHandle ();
XSynchronize (dpy, xFalse);

}

// SELinuxGetDeviceContext = 4
SELinuxGetDeviceContext (Display *dpy, int deviceID)
{
xSELinuxGetDeviceContextReq *req;
xSELinuxGetDeviceContextReply rep;
char deviceContext [100];

LockDisplay (dpy);
GetReq (SELinuxGetDeviceContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxGetDeviceContext;
req->id = deviceID;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxGetDeviceContext);
return (-1);

}

if (rep.context_len == 0)
fprintf (outputPtr, "SELinuxGetDeviceContext - No Context

available\n");
else {

_XReadPad (dpy, deviceContext, rep.context_len);
fprintf (outputPtr, "SELinuxGetDeviceContext - DeviceID: %d\nDevice

Context: %s\n", deviceID, deviceContext);
}
UnlockDisplay (dpy);
SyncHandle ();

}

// Get the SELinuxSetWindowCreateContext = 5
SELinuxSetWindowCreateContext (Display *dpy, char * buffer)
{
xSELinuxSetWindowCreateContextReq *req;
long nbytes;

fprintf (outputPtr, "SELinuxSetWindowCreateContext - Setting Context:
%s\n", buffer);

LockDisplay (dpy);
GetReq (SELinuxSetWindowCreateContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxSetWindowCreateContext;
nbytes = req->context_len = strlen(buffer);
req->length += (nbytes + 3) >> 2; /* round up to mult of 4 */
_XSend (dpy, buffer, nbytes);

//Data (dpy, buffer, nbytes);

// See the SELinuxSetDeviceCreateContext() function for the reason why
// the XSynchronize() functions are called.

XSynchronize (dpy, xTrue);
UnlockDisplay (dpy);
SyncHandle ();
XSynchronize (dpy, xFalse);

Page 89

The SELinux Notebook - Sample Policy Source

}

// SELinuxGetWindowCreateContext = 6
SELinuxGetWindowCreateContext (Display *dpy)
{
xSELinuxGetWindowCreateContextReq *req;
xSELinuxGetWindowCreateContextReply rep;
char windowContext [100];

LockDisplay (dpy);
GetReq (SELinuxGetWindowCreateContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxGetWindowCreateContext;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxGetWindowCreateContext);
return (-1);

}

if (rep.context_len == 0)
fprintf (outputPtr, "SELinuxGetWindowCreateContext - No Context

available\n");
else {

_XReadPad (dpy, windowContext, rep.context_len);
fprintf (outputPtr, "SELinuxGetWindowCreateContext - Context: %s\n",

windowContext);
}
UnlockDisplay (dpy);
SyncHandle ();

}

// SELinuxGetWindowContext = 7
SELinuxGetWindowContext (Display *dpy, Window windowID)
{
xSELinuxGetWindowContextReq *req;
xSELinuxGetWindowContextReply rep;
char windowContext [100];

LockDisplay (dpy);
GetReq (SELinuxGetWindowContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxGetWindowContext;
req->id = windowID;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxGetWindowContext);
return (-1);

}

if (rep.context_len == 0)
fprintf (outputPtr, "SELinuxGetWindowContext - No Context

available\n");
else {

_XReadPad (dpy, windowContext, rep.context_len);
fprintf (outputPtr, "SELinuxGetWindowContext - WinID: %d\nWindow

Context: %s\n", windowID, windowContext);
}
UnlockDisplay (dpy);
SyncHandle ();

}

// Get the SELinuxSetPropertyCreateContext = 8
SELinuxSetPropertyCreateContext (Display *dpy, char * buffer)
{
xSELinuxSetPropertyCreateContextReq *req;
long nbytes;

fprintf (outputPtr, "SELinuxSetPropertyCreateContext - Setting Context:
%s\n", buffer);

LockDisplay (dpy);
GetReq (SELinuxSetPropertyCreateContext, req);
req->reqType = X_SELinuxExtensionOpcode;

Page 90

The SELinux Notebook - Sample Policy Source

req->SELinuxReqType = X_SELinuxSetPropertyCreateContext;
nbytes = req->context_len = strlen(buffer);
req->length += (nbytes + 3) >> 2; /* round up to mult of 4 */
_XSend (dpy, buffer, nbytes);

//Data (dpy, buffer, nbytes);

// See the SELinuxSetDeviceCreateContext() function for the reason why
// the XSynchronize() functions are called.

XSynchronize (dpy, xTrue);
UnlockDisplay (dpy);
SyncHandle ();
XSynchronize (dpy, xFalse);

}

// SELinuxGetPropertyCreateContext = 9
SELinuxGetPropertyCreateContext (Display *dpy)
{
xSELinuxGetPropertyCreateContextReq *req;
xSELinuxGetPropertyCreateContextReply rep;
char propertyContext [100];

LockDisplay (dpy);
GetReq (SELinuxGetPropertyCreateContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxGetPropertyCreateContext;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxGetPropertyCreateContext);
return (-1);

}

if (rep.context_len == 0)
fprintf (outputPtr, "SELinuxGetPropertyCreateContext - No Context

available\n");
else {

_XReadPad (dpy, propertyContext, rep.context_len);
fprintf (outputPtr, "SELinuxGetPropertyCreateContext - Context: %s\n",

propertyContext);
}
UnlockDisplay (dpy);
SyncHandle ();

}

// Get the SELinuxSetPropertyUseContext = 10
SELinuxSetPropertyUseContext (Display *dpy, char * buffer)
{
xSELinuxSetPropertyUseContextReq *req;
long nbytes;

fprintf (outputPtr, "SELinuxSetPropertyUseContext - Setting Context:
%s\n", buffer);

LockDisplay (dpy);
GetReq (SELinuxSetPropertyUseContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxSetPropertyUseContext;
nbytes = req->context_len = strlen(buffer);
req->length += (nbytes + 3) >> 2; /* round up to mult of 4 */

//_XSend (dpy, buffer, nbytes);
Data (dpy, buffer, nbytes);

// See the SELinuxSetDeviceCreateContext() function for the reason why
// the XSynchronize() functions are called.

XSynchronize (dpy, xTrue);
UnlockDisplay (dpy);
SyncHandle ();
XSynchronize (dpy, xFalse);

}

// SELinuxGetPropertyUseContext = 11
SELinuxGetPropertyUseContext (Display *dpy)

Page 91

The SELinux Notebook - Sample Policy Source

{
xSELinuxGetPropertyUseContextReq *req;
xSELinuxGetPropertyUseContextReply rep;
char propertyContext [100];

LockDisplay (dpy);
GetReq (SELinuxGetPropertyUseContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxGetPropertyUseContext;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxGetPropertyUseContext);
return (-1);

}

if (rep.context_len == 0)
fprintf (outputPtr, "SELinuxGetPropertyUseContext - No Context

available\n");
else {

_XReadPad (dpy, propertyContext, rep.context_len);
fprintf (outputPtr, "SELinuxGetPropertyUseContext - Context: %s\n",

propertyContext);
}
UnlockDisplay (dpy);
SyncHandle ();

}

// SELinuxGetPropertyContext = 12
SELinuxGetPropertyContext (Display *dpy, Window windowID, Atom propertyAtom)
{
xSELinuxGetPropertyContextReq *req;
xSELinuxGetPropertyContextReply rep;
char propertyContext [100];

LockDisplay (dpy);
GetReq (SELinuxGetPropertyContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxGetPropertyContext;
req->property = propertyAtom;
req->window = windowID;

// Indicate that function 12, 13, 19, 20 or 22 are being called:
checkAccessDeniedFlag = xTrue;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxGetPropertyContext);
return (-1);

}

_XReadPad (dpy, propertyContext, rep.context_len);
fprintf (outputPtr, "SELinuxGetPropertyContext - WinID: %d Atom: %s

\nContext: %s\n", windowID, (XGetAtomName (dpy, propertyAtom)),
propertyContext);

UnlockDisplay (dpy);
SyncHandle ();
checkAccessDeniedFlag = xFalse;

}

// SELinuxGetPropertyDataContext = 13
SELinuxGetPropertyDataContext (Display *dpy, Window windowID, Atom
propertyAtom)
{
xSELinuxGetPropertyDataContextReq *req;
xSELinuxGetPropertyDataContextReply rep;
char propertyContext [100];

LockDisplay (dpy);
GetReq (SELinuxGetPropertyDataContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxGetPropertyDataContext;
req->property = propertyAtom;
req->window = windowID;

// Indicate that function 12, 13, 19, 20 or 22 are being called:
checkAccessDeniedFlag = xTrue;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxGetPropertyDataContext);

Page 92

The SELinux Notebook - Sample Policy Source

return (-1);
}

_XReadPad (dpy, propertyContext, rep.context_len);
fprintf (outputPtr, "SELinuxGetPropertyDataContext - WinID: %d Atom: %s

\nContext: %s\n", windowID, (XGetAtomName (dpy, propertyAtom)),
propertyContext);

UnlockDisplay (dpy);
SyncHandle ();
checkAccessDeniedFlag = xFalse;

}

// SELinuxListProperties = 14
SELinuxListProperties (Display *dpy, Window windowID)
{
xSELinuxListPropertiesReq *req;
xSELinuxListPropertiesReply rep;
xSELinuxListItem xlist_item;
xSELinuxListItemEntry *info_struct = NULL;
char propertyList [100];
char context [100];
int i;

LockDisplay (dpy);
GetReq (SELinuxListProperties, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxListProperties;
req->id = windowID;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxListProperties);
return (-1);

}

info_struct = Xmalloc((sizeof (xSELinuxListItemEntry) * rep.length) +
sizeof (CARD32));

if(rep.count) {
for(i = 0; i < rep.count; i++) {

// Read initial info that has Atom name and context sizes:
_XReadPad (dpy, (char *)&xlist_item, sz_xSELinuxListItem);

// Add these to the holding structure for later printing:
info_struct[i].atom_name = (Atom)xlist_item.name;
info_struct[i].object_context_len = xlist_item.object_context_len;

info_struct[i].data_context_len = xlist_item.data_context_len;

// Read the object context string and copy to the holding structure:

_XReadPad (dpy, propertyList, xlist_item.object_context_len);

if (!strncpy ((char *)&info_struct[i].object_context,
propertyList, (int)xlist_item.object_context_len)) {

UnlockDisplay (dpy);
SyncHandle ();
perror ("strncpy function failed");
exit (1);

}

// Read the data context string and copy to the holding structure:
_XReadPad (dpy, propertyList, xlist_item.data_context_len);

if (!strncpy ((char *)&info_struct[i].data_context, propertyList,
(int)xlist_item.data_context_len))

fprintf (outputPtr, "strncpy function failed\n");
}

} else
_XEatData(dpy, rep.length << 2);

UnlockDisplay (dpy);

Page 93

The SELinux Notebook - Sample Policy Source

SyncHandle ();

// Done with _XRead processes, so need to print off the information.
fprintf (outputPtr, "SELinuxListProperties found %d properties for WinID:

%d\n", rep.count, windowID);
for (i = 0; i < rep.count; i++) {

fprintf (outputPtr, "\nSELinuxListProperties (%d of %d) - Atom: %s\n",
i+1, rep.count, (XGetAtomName (dpy, (Atom)info_struct[i].atom_name)));

fprintf (outputPtr, "Object Context: %s\n", (char
*)&info_struct[i].object_context);

fprintf (outputPtr, "Data Context: %s\n", (char
*)&info_struct[i].data_context);

}
Xfree (info_struct);

}

// Get the SELinuxSetSelectionCreateContext = 15
SELinuxSetSelectionCreateContext (Display *dpy, char * buffer)
{
xSELinuxSetSelectionCreateContextReq *req;
long nbytes;

fprintf (outputPtr, "SELinuxSetSelectionCreateContext - Setting Context:
%s\n", buffer);

LockDisplay (dpy);
GetReq (SELinuxSetSelectionCreateContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxSetSelectionCreateContext;
nbytes = req->context_len = strlen (buffer);
req->length += (nbytes + 3) >> 2; /* round up to mult of 4 */

//_XSend (dpy, buffer, nbytes);
Data (dpy, buffer, nbytes);

// See the SELinuxSetDeviceCreateContext() function for the reason why
// the XSynchronize() functions are called.

XSynchronize (dpy, xTrue);
UnlockDisplay (dpy);
SyncHandle ();
XSynchronize (dpy, xFalse);

}

// SELinuxGetSelectionCreateContext = 16
SELinuxGetSelectionCreateContext (Display *dpy)
{
xSELinuxGetSelectionCreateContextReq *req;
xSELinuxGetSelectionCreateContextReply rep;
char selectionContext [100];

LockDisplay (dpy);
GetReq (SELinuxGetSelectionCreateContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxGetSelectionCreateContext;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxGetSelectionCreateContext);
return (-1);

}

if (rep.context_len == 0)
fprintf (outputPtr, "SELinuxGetSelectionCreateContext - No Context

available\n");
else {

_XReadPad (dpy, selectionContext, rep.context_len);
fprintf (outputPtr, "SELinuxGetSelectionCreateContext - Context:

%s\n", selectionContext);
}
UnlockDisplay (dpy);
SyncHandle ();

}

// Get the SELinuxSetSelectionUseContext = 17
SELinuxSetSelectionUseContext (Display *dpy, char * buffer)
{
xSELinuxSetSelectionUseContextReq *req;

Page 94

The SELinux Notebook - Sample Policy Source

long nbytes;

fprintf (outputPtr, "SELinuxSetSelectionUseContext - Setting Context:
%s\n", buffer);

LockDisplay (dpy);
GetReq (SELinuxSetSelectionUseContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxSetSelectionUseContext;
nbytes = req->context_len = strlen (buffer);
req->length += (nbytes + 3) >> 2; /* round up to mult of 4 */

//_XSend (dpy, buffer, nbytes);
Data (dpy, buffer, nbytes);

// See the SELinuxSetDeviceCreateContext() function for the reason why
// the XSynchronize() functions are called.

XSynchronize (dpy, xTrue);
UnlockDisplay (dpy);
SyncHandle ();
XSynchronize (dpy, xFalse);

}

// Get the SELinuxGetSelectionUseContext = 18
SELinuxGetSelectionUseContext (Display *dpy)
{
xSELinuxGetSelectionUseContextReq *req;
xSELinuxGetSelectionUseContextReply rep;
char selectionContext [100];

LockDisplay (dpy);
GetReq (SELinuxGetSelectionUseContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxGetSelectionUseContext;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxGetSelectionUseContext);
return (-1);

}

if (rep.context_len == 0)
fprintf (outputPtr, "SELinuxGetSelectionUseContext - No Context

available\n");
else {

_XReadPad (dpy, selectionContext, rep.context_len);
fprintf (outputPtr, "SELinuxGetSelectionUseContext - Context: %s\n",

selectionContext);
}
UnlockDisplay (dpy);
SyncHandle ();

}

// Get the SELinuxGetSelectionContext = 19
SELinuxGetSelectionContext (Display *dpy, Atom selectionAtom)
{
xSELinuxGetSelectionContextReq *req;
xSELinuxGetSelectionContextReply rep;
char selectionContext [100];

LockDisplay (dpy);
GetReq (SELinuxGetSelectionContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxGetSelectionContext;
req->id = selectionAtom;

// Indicate that function 12, 13, 19, 20 or 22 are being called:
checkAccessDeniedFlag = xTrue;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxGetSelectionContext);
return (-1);

}

_XReadPad (dpy, selectionContext, rep.context_len);
fprintf (outputPtr, "SELinuxGetSelectionContext - Atom: %s\nContext:

%s\n", (XGetAtomName (dpy, selectionAtom)), selectionContext);
//fprintf (outputPtr, "This is the context for x_selection OBJECT\n");

UnlockDisplay (dpy);
SyncHandle ();

Page 95

The SELinux Notebook - Sample Policy Source

// Indicate that function 12, 13, 19, 20 or 22 are being called:
checkAccessDeniedFlag = xTrue;

}

// Get the SELinuxGetSelectionDataContext = 20
SELinuxGetSelectionDataContext (Display *dpy, Atom selectionAtom)
{
xSELinuxGetSelectionDataContextReq *req;
xSELinuxGetSelectionDataContextReply rep;
char selectionContext [100];

LockDisplay (dpy);
GetReq (SELinuxGetSelectionDataContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxGetSelectionDataContext;
req->id = selectionAtom;

// Indicate that function 12, 13, 19, 20 or 22 are being called:
checkAccessDeniedFlag = xTrue;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxGetSelectionDataContext);
return (-1);

}

_XReadPad (dpy, selectionContext, rep.context_len);
fprintf (outputPtr, "SELinuxGetSelectionDataContext - Atom: %s\nContext:

%s\n", (XGetAtomName (dpy, selectionAtom)), selectionContext);
//fprintf (outputPtr, "This is the context for x_application_data
OBJECT\n");

UnlockDisplay (dpy);
SyncHandle ();

// Indicate that function 12, 13, 19, 20 or 22 are being called:
checkAccessDeniedFlag = xTrue;

}

// Get the SELinuxListSelections = 21
SELinuxListSelections (Display *dpy)
{
xSELinuxListSelectionsReq *req;
xSELinuxListSelectionsReply rep;
xSELinuxListItem xlist_item;
xSELinuxListItemEntry *info_struct = NULL;
char selectionList [600];
char context [100];
int i;

LockDisplay (dpy);
GetReq (SELinuxListSelections, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxListSelections;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxListSelections);
return (-1);

}

info_struct = Xmalloc((sizeof (xSELinuxListItemEntry) * rep.length) +
sizeof (CARD32));

if(rep.count) {
for(i = 0; i < rep.count; i++) {

// Read initial info that has Atom name and context sizes:
_XReadPad (dpy, (char *)&xlist_item, sz_xSELinuxListItem);

// Add these to the holding structure for later printing:
info_struct[i].atom_name = (Atom)xlist_item.name;
info_struct[i].object_context_len = xlist_item.object_context_len;

info_struct[i].data_context_len = xlist_item.data_context_len;

// Read the object context string and copy to the holding structure:

_XReadPad (dpy, selectionList, xlist_item.object_context_len);

Page 96

The SELinux Notebook - Sample Policy Source

if (!strncpy ((char *)&info_struct[i].object_context,
selectionList, (int)xlist_item.object_context_len))

fprintf (outputPtr, "strncpy function failed\n");

// Read the data context string and copy to the holding structure:
_XReadPad (dpy, selectionList, xlist_item.data_context_len);

if (!strncpy ((char *)&info_struct[i].data_context, selectionList,
(int)xlist_item.data_context_len))

fprintf (outputPtr, "strncpy function failed\n");
}

} else
_XEatData(dpy, rep.length << 2);

UnlockDisplay (dpy);
SyncHandle ();

// Done with _XRead processes, so need to print off the information.
for (i = 0; i < rep.count; i++) {

fprintf (outputPtr, "\nSELinuxListSelections (%d of %d) - Atom: %s\n",
i+1, rep.count, (XGetAtomName (dpy, (Atom)info_struct[i].atom_name)));

fprintf (outputPtr, "Object Context: %s\n", (char
*)&info_struct[i].object_context);

fprintf (outputPtr, "Data Context: %s\n", (char
*)&info_struct[i].data_context);

}
Xfree (info_struct);

}

//
// When reading a client context that this function does not have
// permission to read will not result in an error being detected by
// the _XReply CatchXreplyError() function. Instead the _XReply
// call will fail with 'false' and the XReplyError() function
// will then check the errno return as described in the XReplyError()
// function. Also see the "checkAccessDeniedFlag" comments as
// to why this flag is present.
//
// SELinuxGetClientContext = 22
SELinuxGetClientContext (Display *dpy, Window resourceID)
{
xSELinuxGetClientContextReq *req;
xSELinuxGetClientContextReply rep;
char resourceContext [100];

LockDisplay (dpy);
GetReq (SELinuxGetClientContext, req);
req->reqType = X_SELinuxExtensionOpcode;
req->SELinuxReqType = X_SELinuxGetClientContext;
req->id = resourceID;

// Indicate that function 12, 13, 19, 20 or 22 are being called:
checkAccessDeniedFlag = xTrue;
if (!_XReply (dpy, (xReply *)&rep, 0, xFalse)) {

XReplyError (dpy, X_SELinuxGetClientContext);
return (-1);

}

if (rep.context_len == 0)
fprintf (outputPtr, "SELinuxGetClientContext - No Context

available\n");
else {

_XReadPad (dpy, resourceContext, rep.context_len);
fprintf (outputPtr, "SELinuxGetClientContext - WinID: %d\nClient

Context: %s\n", resourceID, resourceContext);
}
checkAccessDeniedFlag = xFalse;
UnlockDisplay (dpy);
SyncHandle ();

}

4. In the ./notebook-source/x-windows/x-select+paste
directory, produce the X-select.c source file with the following entries:

Page 97

The SELinux Notebook - Sample Policy Source

/**/
/* */
/* This is the X-select application for the Notebook X-Windows demos. */
/* It retrieves the contexts via the XSELinux OM and the selected item */
/* (Hello World) is selected and given to the calling X-paste application.*/
/* */
/* Copyright (C) 2010 Richard Haines */
/* */
/* This program is free software: you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* */
/**/

#include <X11/Xlib.h>
#include <X11/Xatom.h>
#include <X11/Xutil.h>
#include <X11/extensions/XInput2.h>

#include <stdio.h>
#include <stdlib.h>

#include <selinux/selinux.h>

#define ENFORCING 1

// The Error handler functions are in XSELinuxOMFunctions.c
extern int CatchXErrorHandler ();

extern int CatchXreplyErrorHandler ();

//Hold the opcode from the XQueryExtension call in XSELinuxOMFunctions.c
extern int X_SELinuxExtensionOpcode;

// Set output to stdout, but allow output to a file with option 'o'
// Declared here as used by functions in XSELinuxOMFunctions.c to output
info
FILE *outputPtr;

int main (int argc, char **argv)
{
// SELinux Context
security_context_t domainContext;
int result;
unsigned char buffer [] = "Hello World";
int event, error;
Window Sown;
XEvent xevent;
XTextProperty windowName;
XSelectionRequestEvent *request_event;
char windowNameString [100] = " ";
char *windowNamePtr;

// Set output to stdout but allow output to a file with command line option
outputPtr = stdout;

// Use argv [1] as the filename for output
if (argc == 2) {

if ((outputPtr = fopen (argv [1], "w")) == NULL) {
fprintf (stderr, "Cannot open output file %s\n", argv [1]);
outputPtr = stdout;

}
else

printf("\nOutput to file: %s\n", argv [1]);
}

Page 98

The SELinux Notebook - Sample Policy Source

// Check if enforcing or not
if (security_getenforce () == ENFORCING)

fprintf (outputPtr, "SELinux is in Enforcing mode\n");
else

fprintf (outputPtr, "SELinux is in Permissive mode\n");

// Get a display handle
Display *dpy = XOpenDisplay(NULL);

// Get the SELinux Extension opcode
if (!XQueryExtension (dpy, "SELinux", &X_SELinuxExtensionOpcode, &event,

&error)) {
perror ("XSELinux extension not available");
exit (1);

}
else {

fprintf (outputPtr, "\n***** Display Initial Window Information
******\n");

fprintf (outputPtr, "\nXQueryExtension for XSELinux Extension -
Opcode: %d Events: %d Error: %d \n", X_SELinuxExtensionOpcode, event,
error);
}

// Have XSELinux Object Manager

// Set our own handler for errors as the default displays error and exits.
XSetErrorHandler (CatchXErrorHandler);

// Set our own handler for _XReply errors.
XExtCodes *codes = XInitExtension (dpy, "SELinux");
XESetError (dpy, codes->extension, CatchXreplyErrorHandler);

// Now open a window
Window w = XCreateSimpleWindow (dpy, DefaultRootWindow(dpy), 0, 0, 500,

50, 0, 0, 0);

// Get and print Client context information
 if (result = getcon (&domainContext) < 0) {
 perror ("Could not get Client context");
 exit (1);
 }
fprintf (outputPtr, "\nlibselinux getcon - Domain Context: %s for WinID:

%d\n", domainContext, w);
sprintf (windowNameString, "%s - %s", argv[0], domainContext);

// Get the SELinux OM Version
fprintf (outputPtr, "\nCalling SELinuxQueryVersion (0) for this

display:\n");
SELinuxQueryVersion (dpy);

fprintf (outputPtr, "\nCalling SELinuxListProperties (14) before Drawing
Window (WinID: %d):\n", w);
SELinuxListProperties (dpy, w);

// Show the app name and SELinux context in the Window
windowNamePtr = windowNameString;
if (XStringListToTextProperty ((char **)&windowNamePtr, 1, &windowName) ==

0) {
perror ("Structure allocation for windowName failed");
exit (1);

}
XSetWMProperties (dpy, w, &windowName, NULL, NULL, 0, NULL, NULL, NULL);

freecon (domainContext);
XSelectInput (dpy, w, StructureNotifyMask);
XMapWindow (dpy, w);
XFlush (dpy);

// This function is called to display the start-up context info.
DisplayInitialContextInfo (dpy, w);

// This function can be called to set any context info using the
// SELinuxSet... functions.
SetContextTest (dpy);

XFlush (dpy);

Page 99

The SELinux Notebook - Sample Policy Source

fflush (outputPtr);

// Set the selection owner to our wndow
XSetSelectionOwner (dpy, XA_PRIMARY, w, CurrentTime);

while (1) {
// Uncomment the XSetSelectionOwner here to ensure the app always selects
// XSetSelectionOwner (dpy, XA_PRIMARY, w, CurrentTime);

printf ("WinID: %d waiting for SelectionRequest event\n", (Window)w);
XNextEvent (dpy, &xevent);

if (xevent.type == SelectionRequest) {
request_event=&(xevent.xselectionrequest);
printf ("Have SelectionRequest event\n");

// Comment out DisplaySelectionContextInfo to stop screen clutter:
DisplaySelectionContextInfo (dpy, w);
if (request_event->target == XA_STRING)

XChangeProperty (dpy, request_event->requestor, request_event-
>property, XA_STRING, 8, PropModeReplace, buffer, sizeof (buffer));

}
}

}

/**/
/* */
/* These functions display or set (optional) information using the */
/* XSELinux functions. They have been moved here to avoid cluttering the */
/* X code that selects the data. */
/* */
/**/

// This function is called to display the start-up context info for tests.
int DisplayInitialContextInfo (Display *dpy, Window w)
{
XIDeviceInfo *devices, device;
int ndevices, counter;
fprintf (outputPtr, "\nCalling SELinuxGetWindowCreateContext (6) for this

display:\n");
SELinuxGetWindowCreateContext (dpy);

fprintf (outputPtr, "\nCalling SELinuxGetClientContext (22) for this
Resource (WinID: %d):\n", w);
SELinuxGetClientContext (dpy, w);

fprintf (outputPtr, "\nCalling SELinuxGetWindowContext (7) for this Window
(WinID: %d):\n", w);
SELinuxGetWindowContext (dpy, w);

// Do Device stuff
fprintf (outputPtr, "\nCalling SELinuxGetDeviceCreateContext (2) for this

display:\n");
SELinuxGetDeviceCreateContext (dpy);

fprintf (outputPtr, "\nCalling SELinuxGetDeviceContext (4) for this
display:\n", w);
devices = XIQueryDevice(dpy, XIAllDevices, &ndevices);

for (counter = 0; counter < ndevices; counter++) {
device = devices [counter];
fprintf (outputPtr, "\nDevice %s is a ", device.name);
switch (device.use) {

case XIMasterPointer: fprintf (outputPtr, "master pointer\n");
break;

case XIMasterKeyboard: fprintf (outputPtr, "master keyboard\n");
break;

case XISlavePointer: fprintf (outputPtr, "slave pointer\n");
break;

case XISlaveKeyboard: fprintf (outputPtr, "slave keyboard\n");
break;

case XIFloatingSlave: fprintf (outputPtr, "floating slave\n");
break;

}
SELinuxGetDeviceContext (dpy, device.deviceid);

}

Page 100

The SELinux Notebook - Sample Policy Source

XIFreeDeviceInfo (devices);

// Do Properties
fprintf (outputPtr, "\nCalling SELinuxGetPropertyCreateContext (9) this

display:\n");
SELinuxGetPropertyCreateContext (dpy);

fprintf (outputPtr, "\nCalling SELinuxGetPropertyUseContext (11) for this
display:\n");
SELinuxGetPropertyUseContext (dpy);

fprintf (outputPtr, "\nCalling SELinuxListProperties (14) after Drawing
Window (WinID: %d):\n", w);
SELinuxListProperties (dpy, w);

// Do Selections
fprintf (outputPtr, "\nCalling SELinuxGetSelectionCreateContext (16) for

this display:\n");
SELinuxGetSelectionCreateContext (dpy);

fprintf (outputPtr, "\nCalling SELinuxGetSelectionUseContext (18) for this
display:\n");
SELinuxGetSelectionUseContext (dpy);

fprintf (outputPtr, "\nCalling SELinuxListSelections (21) for this
display:\n");
SELinuxListSelections (dpy);

}

// This function is called to display the context info when selection made
for tests.
int DisplaySelectionContextInfo (Display *dpy, Window w)
{
fprintf (outputPtr, "\n***** Display Selection Window Information

******\n");

// Call the SELinux extension codes For Selections - with XA_PRIMARY)
fprintf (outputPtr, "\nCalling SELinuxGetSelectionContext (19) with

XA_PRIMARY for this Window (WinID: %d)\n", w);
SELinuxGetSelectionContext (dpy, XA_PRIMARY);

fprintf (outputPtr, "\nCalling SELinuxGetSelectionDataContext (20) with
XA_PRIMARY for this Window (WinID: %d)\n", w);
SELinuxGetSelectionDataContext (dpy, XA_PRIMARY);

// Call the SELinux extension codes For Properties - with XA_WM_NAME)
fprintf (outputPtr, "\nCalling SELinuxGetPropertyContext (12) with WM_NAME

for this Window:\n");
SELinuxGetPropertyContext (dpy, w, XA_WM_NAME);

fprintf (outputPtr, "\nCalling SELinuxGetPropertyDataContext (13) with
WM_NAME for this Window:\n");
SELinuxGetPropertyDataContext (dpy, w, XA_WM_NAME);

fflush (outputPtr);
}

// This function can be called to set any context info for tests.
// NOTE - These are currently commented out
int SetContextTest (Display *dpy)
{
/*
fprintf (outputPtr, "\nAdding any compiled SELinuxSet... function context

entries\n");

fprintf (outputPtr, "\nCalling SELinuxSetPropertyUseContext (10) for this
display\n");
SELinuxSetPropertyUseContext (dpy, "user_u:object_r:unconfined_t");
fprintf (outputPtr, "\nCalling SELinuxGetPropertyUseContext (11) for this

display:\n");
SELinuxGetPropertyUseContext (dpy);

fprintf (outputPtr, "\nEnd SELinuxSet... functions\n");

Page 101

The SELinux Notebook - Sample Policy Source

*/
}

5. In the ./notebook-source/x-windows/x-select+paste
directory, produce the X-paste.c source file with the following entries:

/**/
/* */
/* This is the X-paste application for the Notebook X-Windows demos. */
/* It retrieves the contexts via the XSELinux OM and the selected item */
/* from the X-select application. */
/* */
/* Copyright (C) 2010 Richard Haines */
/* */
/* This program is free software: you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* */
/**/

#include <X11/Xlib.h>
#include <X11/Xatom.h>
#include <X11/Xlibint.h>
#include <X11/Xutil.h>
#include <X11/extensions/XInput2.h>

#include <stdio.h>
#include <stdlib.h>

#include <selinux/selinux.h>

#define ENFORCING 1

// The Error handler functions are in XSELinuxOMFunctions.c
extern int CatchXErrorHandler ();

extern int CatchXreplyErrorHandler ();

// SELinux Context stuff
security_context_t domainContext;

//Hold the opcode from the XQueryExtension call
extern int X_SELinuxExtensionOpcode;

// Set output to stdout, but allow output to a file with option 'o'
// Declared here as used by functions in XSELinuxOMFunctions.c to output info
FILE *outputPtr;

int main (int argc, char **argv)
{
int propertyFormat, result, counter;
unsigned long propertyItems, stringLength, holder;
char *selectedData;
int event, error;
XEvent xevent;
Atom propertyType;
Window Sown;
XTextProperty windowName;
char windowNameString [100] = " ";
char *windowNamePtr;

// Set output to stdout but allow output to a file with command line option
outputPtr = stdout;

Page 102

The SELinux Notebook - Sample Policy Source

// Use argv [1] as the filename for output
if (argc == 2) {

if ((outputPtr = fopen (argv [1], "w")) == NULL) {
fprintf (stderr, "Cannot open output file %s\n", argv [1]);
outputPtr = stdout;

}
else

printf("\nOutput to file: %s\n", argv [1]);
}

// Check if enforcing or not
if (security_getenforce () == ENFORCING)

fprintf (outputPtr, "SELinux is in Enforcing mode\n");
else

fprintf (outputPtr, "SELinux is in Permissive mode\n");

// Get a display handle
Display *dpy = XOpenDisplay(NULL);

// Get the SELinux Extension opcode
if (!XQueryExtension (dpy, "SELinux", &X_SELinuxExtensionOpcode, &event,

&error)) {
perror ("XSELinux extension not available");
exit (1);

}
else {

fprintf (outputPtr, "\n***** Display Initial Window Information
******\n");

fprintf (outputPtr, "\nXQueryExtension for XSELinux Extension -
Opcode: %d Events: %d Error: %d \n", X_SELinuxExtensionOpcode, event, error);

}
// Have XSELinux Object Manager

// Set our own handler for errors as the default displays error and exits.
XSetErrorHandler (CatchXErrorHandler);

// Set our own handler for _XReply errors.
XExtCodes *codes = XInitExtension (dpy, "SELinux");
XESetError (dpy, codes->extension, CatchXreplyErrorHandler);

// Now open a window
Window w = XCreateSimpleWindow (dpy, DefaultRootWindow(dpy), 0, 0, 500,

50, 0, 0, 0);

// Get and print Client context information
 if (result = getcon (&domainContext) < 0) {
 perror ("Could not get Client context");
 exit (1);
 }

fprintf (outputPtr, "\nlibselinux getcon - Domain Context: %s for WinID:
%d\n", domainContext, w);

sprintf (windowNameString, "%s - %s", argv[0], domainContext);

// Get the SELinux OM Version
fprintf (outputPtr, "\nCalling SELinuxQueryVersion (0) for this

display:\n");
SELinuxQueryVersion (dpy);

fprintf (outputPtr, "\nCalling SELinuxListProperties (14) before Drawing
Window (WinID: %d):\n", w);

SELinuxListProperties (dpy, w);

// Show the app name and SELinux context in the Window
windowNamePtr = windowNameString;
if (XStringListToTextProperty ((char **)&windowNamePtr, 1, &windowName) ==

0) {
perror ("Structure allocation for windowName failed");
exit (1);

}
XSetWMProperties (dpy, w, &windowName, NULL, NULL, 0, NULL, NULL, NULL);

freecon (domainContext);
XSelectInput (dpy, w, StructureNotifyMask);
XMapWindow (dpy, w);
XFlush (dpy);

Page 103

The SELinux Notebook - Sample Policy Source

// This function is called to display the start-up context info.
DisplayInitialContextInfo (dpy, w);

// This function can be called to set any context info using the
// SELinuxSet... functions.

SetContextTest (dpy);

XFlush (dpy);
fflush (outputPtr);

XSelectInput (dpy, w, StructureNotifyMask+ExposureMask);

while (1) {

// XGetSelectionOwner returns the current owner of the Selection in Sown, or
None if no selections made

Sown = XGetSelectionOwner (dpy, XA_PRIMARY);
fprintf (outputPtr, "\nWaiting for Selection Owner\n");
if (outputPtr != stdout)

printf("\nWaiting for Selection Owner\n");

if (Sown != None) {
// XConvertSelection converts the specified selection to the specified target
type

XConvertSelection (dpy,
XA_PRIMARY,// Selection atom
XA_STRING, // Target atom
XA_STRING, // Property name
Sown, // The current owner
CurrentTime);

XFlush (dpy);

// This function is called to display the context info when selection made
for tests.

DisplaySelectionContextInfo (dpy, w, Sown);

// Query how much data to retrieve
result = XGetWindowProperty (dpy, Sown,

XA_STRING, // Atom Property name
0, 0, // offset & length set to zero as this is a

query
0, // Do not delete
XA_STRING, // For this test require a STRING
&propertyType, // return property type
&propertyFormat, // returned property format
&propertyItems, // returned number items
&stringLength, // number of bytes to read
(unsigned char **)&selectedData); // Returned data

if (result == Success) {
// Check if selected text is present (X-select running or if

in unconfined_t
// then could be any selected text)
if (stringLength > 0) {

fprintf (outputPtr, "\nThis WinID: %d has data selected by
WinID: %d\n",

(Window)w , (Window)Sown);
if (outputPtr != stdout) {

printf("\nThis WinID: %d has data selected by WinID:
%d\n",

(Window)w , (Window)Sown);
fflush (outputPtr);

}

result = XGetWindowProperty (dpy, Sown, XA_STRING, 0,
stringLength,

0, AnyPropertyType, &propertyType,
&propertyFormat,&propertyItems,
&holder, (unsigned char **)&selectedData);

if (result == Success) {
fprintf (outputPtr, "The data selected is \"%s\" with

Atom Name: %s and a length of %d bytes\n", selectedData, (XGetAtomName (dpy,
propertyType)), stringLength);

Page 104

The SELinux Notebook - Sample Policy Source

XFree (selectedData);
}
else fprintf (outputPtr, "Failed to read selected data\n");

}
}

}
fflush (outputPtr);
sleep(2);

}
}

/**/
/* */
/* These functions display or set (optional) information using the */
/* XSELinux functions. They have been moved here to avoid cluttering the */
/* code that pastes the data. */
/* */
/**/

// This function is called to display the start-up context info for tests.
int DisplayInitialContextInfo (Display *dpy, Window w)
{
XIDeviceInfo *devices, device;
int ndevices, counter;

fprintf (outputPtr, "\nCalling SELinuxGetWindowCreateContext (6) for this
display:\n");

SELinuxGetWindowCreateContext (dpy);

fprintf (outputPtr, "\nCalling SELinuxGetClientContext (22) for this
Resource (WinID: %d):\n", w);

SELinuxGetClientContext (dpy, w);

fprintf (outputPtr, "\nCalling SELinuxGetWindowContext (7) for this Window
(WinID: %d):\n", w);

SELinuxGetWindowContext (dpy, w);

// Do Device stuff
fprintf (outputPtr, "\nCalling SELinuxGetDeviceCreateContext (2) for this

display:\n");
SELinuxGetDeviceCreateContext (dpy);

fprintf (outputPtr, "\nCalling SELinuxGetDeviceContext (4) for this
display:\n", w);

devices = XIQueryDevice(dpy, XIAllDevices, &ndevices);

for (counter = 0; counter < ndevices; counter++) {
device = devices [counter];
fprintf (outputPtr, "\nDevice %s is a ", device.name);
switch (device.use) {

case XIMasterPointer: fprintf (outputPtr, "master pointer\n");
break;

case XIMasterKeyboard: fprintf (outputPtr, "master keyboard\n");
break;

case XISlavePointer: fprintf (outputPtr, "slave pointer\n");
break;

case XISlaveKeyboard: fprintf (outputPtr, "slave keyboard\n");
break;

case XIFloatingSlave: fprintf (outputPtr, "floating slave\n");
break;

}
SELinuxGetDeviceContext (dpy, device.deviceid);

}
XIFreeDeviceInfo (devices);

// Do Properties
fprintf (outputPtr, "\nCalling SELinuxGetPropertyCreateContext (9) this

display:\n");
SELinuxGetPropertyCreateContext (dpy);

fprintf (outputPtr, "\nCalling SELinuxGetPropertyUseContext (11) for this
display:\n");

SELinuxGetPropertyUseContext (dpy);

Page 105

The SELinux Notebook - Sample Policy Source

fprintf (outputPtr, "\nCalling SELinuxListProperties (14) after Drawing
Window (WinID: %d):\n", w);

SELinuxListProperties (dpy, w);

// Do Selections
fprintf (outputPtr, "\nCalling SELinuxGetSelectionCreateContext (16) for

this display:\n");
SELinuxGetSelectionCreateContext (dpy);

fprintf (outputPtr, "\nCalling SELinuxGetSelectionUseContext (18) for this
display:\n");

SELinuxGetSelectionUseContext (dpy);

fprintf (outputPtr, "\nCalling SELinuxListSelections (21) for this
display:\n");

SELinuxListSelections (dpy);
}

// This function is called to display the context info when selection
detected.
int DisplaySelectionContextInfo (Display *dpy, Window w, Window Sown)
{

fprintf (outputPtr, "\n***** Have Selection Owner so display Window
******\n");

fprintf (outputPtr, "***** Selection & Property Information
******\n");

// Call the SELinux extension codes For Selections - with XA_PRIMARY)
fprintf (outputPtr, "\nCalling SELinuxGetSelectionContext (19) with

XA_PRIMARY for Selection Owner Window (WinID: %d)\n", Sown);
SELinuxGetSelectionContext (dpy, XA_PRIMARY);

fprintf (outputPtr, "\nCalling SELinuxGetSelectionDataContext (20) with
XA_PRIMARY for Selection Owner Window (WinID: %d)\n", Sown);

SELinuxGetSelectionDataContext (dpy, XA_PRIMARY);

fprintf (outputPtr, "\nCalling SELinuxGetSelectionContext (19) with
XA_PRIMARY for this Window (WinID: %d)\n", w);

SELinuxGetSelectionContext (dpy, XA_PRIMARY);

fprintf (outputPtr, "\nCalling SELinuxGetSelectionDataContext (20) with
XA_PRIMARY for this Window (WinID: %d)\n", w);

SELinuxGetSelectionDataContext (dpy, XA_PRIMARY);

// Call the SELinux extension codes For Properties - with XA_WM_NAME)
fprintf (outputPtr, "\nCalling SELinuxGetPropertyContext (12) with WM_NAME

for Property Owner Window:\n");
SELinuxGetPropertyContext (dpy, Sown, XA_WM_NAME);

fprintf (outputPtr, "\nCalling SELinuxGetPropertyDataContext (13) with
WM_NAME for Property Owner Window:\n");

SELinuxGetPropertyDataContext (dpy, Sown, XA_WM_NAME);

fprintf (outputPtr, "\nCalling SELinuxGetPropertyContext (12) with WM_NAME
for this Window:\n");

SELinuxGetPropertyContext (dpy, w, XA_WM_NAME);

fprintf (outputPtr, "\nCalling SELinuxGetPropertyDataContext (13) with
WM_NAME for this Window:\n");

SELinuxGetPropertyDataContext (dpy, w, XA_WM_NAME);
}

// This function can be called to set any context info for tests.
// NOTE - These are currently commented out
int SetContextTest (Display *dpy)
{
/*

fprintf (outputPtr, "\nAdding any compiled SELinuxSet... function context
entries\n");

fprintf (outputPtr, "\nEnd SELinuxSet... functions\n");
*/
}

Page 106

The SELinux Notebook - Sample Policy Source

6. From the ./notebook-source/x-windows/x-select+paste
directory, compile and link the X-select and X-paste applications as follows:

gcc X-paste.c ../x-common/XSELinuxOMFunctions.c -o X-paste
 -l selinux -l X11 -l Xi

gcc X-select.c ../x-common/XSELinuxOMFunctions.c -o X-select
 -l selinux -l X11 -l Xi

7. Copy the X-select and X-paste application binaries to /usr/local/bin as
follows:

cp X-select /usr/local/bin
cp X-paste /usr/local/bin

8. The applications can be tested by calling them from separate virtual terminals,
although they will only be running in the unconfined_t domain as shown
in Figure 4.1 (until the policy module is built as described in the next section).
Note that the x_contexts file loaded in the previous section is the standard
(non-poly) version.

4.3.3 Building the X-select and X-paste Loadable Module
This loadable module is to enforce policy on the X-select and X-paste applications
when they are run in the x_select_paste_t domain using the SELinux runcon
commands as follows:

Note the runcon commands would be run from different virtual
terminals to activate and test the applications.

runcon -t x_select_paste_t X-select
runcon -t x_select_paste_t X-select

The policy has a poly-selection boolean that by default is set to FALSE and
controls what policy rules are enforced depending on what verion of the
x_contexts file is loaded (although note that the boolean does NOT control what
file is loaded, that is a user copy function):

• Testing the standard x_contexts file poly-selection = FALSE.

• Testing the polyinstantiated x_contexts file poly-selection =
TRUE.

The Testing Derived Labels and Testing Polyinstantiated Labels sections run through
a number of tests to check what happens with each setting.

To build the loadable module:

1. In the ./notebook-source/x-windows/x-select+paste
directory, produce the x_select_paste.conf policy configuration file
with the following entries:

module x_select_paste 1.0.0;
#

Page 107

The SELinux Notebook - Sample Policy Source

##
#
This Loadable Module will manage the X-select and X-paste apps using
x_context entries supported by policy rules for testing two
selection scenarios:
#
1) Adding a 'user' prefix to form a 'derived type' and using
type_transition rules similar to the RefPolicy. This does not work
as explained in the PROBLEM section.
This is controlled by setting the "poly-selection" boolean to FALSE
and copying the "x_contexts-file-with-new-labels" to x_contexts.
#
2) Using polyinstantiation and type_member rules. This works okay.
This is controlled by setting the "poly-selection" boolean to TRUE
and copying the "x_contexts-file-with-new-polylabels" to x_contexts.
#
Note that additional rules have been added to allow the XSELinuxGET..
functions to query contexts etc. for the various windows.
#
dontaudit rules have also been added to stop unconfined_t getting to
the x_select_paste_t domain info.
#
Scenario 1 PROBLEM:
Cannot find a way to stop selections in unconfined_t being picked
up by the X-paste application when running in the x_select_paste_t
domain. For example run:
runcon -t x_select_paste_t X-paste
Then select some text in another window running under unconfined_t.
#
The problem seems to revolve around primary_xselection_t that allows all
selections to be seen and used as the object type_transition rule has no
effect at all.
#
It seems that using polyinstantiation for selections is the only option
that works (or do you know better !!! - Also tried using
"constrain x_selection ..", however could not get this to work either.
#
##
#

require {
type unconfined_t;
role unconfined_r;

Event types required from the x_contexts file:
type x11_destroynotify_xevent_t, x11_propertynotify_xevent_t;
type x11_confignotify_xevent_t, x11_enternotify_xevent_t;
type x11_focusout_xevent_t, x11_foucusin_xevent_t;
type x11_mapnotify_xevent_t, x11_reparentnotify_xevent_t;
type x11_expose_xevent_t, x11_leavenotify_xevent_t;
type x11_selectionnotify_xevent_t, x11_unmapnotify_xevent_t;
type x11_selectionrequest_xevent_t;

Extension types required from the x_contexts file:
type big-requests_xextension_t, xkeyboard_xextension_t;
type selinux_xextension_t, xinputextension_xextension_t;
type undefined_xextension_t;

Property types required from the x_contexts file:
type wm_name_xproperty_t, string_xproperty_t;
type wm_class_xproperty_t, wm_client_machine_xproperty_t;
type wm_command_xproperty_t, wm_hints_xproperty_t;
type wm_normal_hints_xproperty_t;
type undefined_xproperty_t;
type resource_manager_xproperty_t;

Selection types required from the x_contexts file:
type primary_xselection_t, undefined_xselection_t;

class x_property { create read write getattr };
class x_selection { read getattr setattr };
class x_extension { query use };
class x_event { send receive };
class x_synthetic_event { send receive };

Page 108

The SELinux Notebook - Sample Policy Source

class x_drawable { read get_property getattr send list_property setattr
show receive set_property create manage add_child list_child blend };

class x_gc { create setattr };
class x_keyboard { read getattr use getfocus };
class x_resource { read };
class x_client { getattr };
class x_pointer { getattr read };

class file {read entrypoint getattr execute write execute_no_trans
create };

class process { transition siginh signal rlimitinh noatsecure sigchld };
class dir { search getattr write add_name };
class fd { use };
class chr_file { read write getattr };
class lnk_file { read };
class filesystem getattr;

class unix_stream_socket { create connect connectto read write getattr };
class security { check_context };
class fifo_file { read };

}

These type entries have not been allocated any allow rules as they are not
used (although I thought they would be !!). They were flagged by sechecker
and have been left in for reference only:
user_primary_xselection_t, user_wm_command_xproperty_t,
user_x11_selectionnotify_xevent_t, user_wm_class_xproperty_t,
user_wm_hints_xproperty_t, user_x11_selectionrequest_xevent_t,
user_wm_normal_hints_xproperty_t, user_undefined_xselection_t
#

Have a boolen to set either derived selections (false) that do not seem
to work at all, or set selections using polyinstantiation that requires
a type_member statement and poly_primary entry in the x_contexts file.
Polyinstantiation works fine.
#
bool poly-selection false;

The domain is x_select_paste_t
type x_select_paste_t;

Start Derived type entries
Derive a specific 'type' by adding a 'prefix'. In this case 'user'.
A derived type will be required for each entry in the x_context file
that the application will need to 'use'. The derived type will then
need a 'type_transition' for the object.
#
Event types required from the x_contexts file:
type user_x11_destroynotify_xevent_t;
type user_x11_propertynotify_xevent_t;
type user_x11_confignotify_xevent_t;
type user_x11_enternotify_xevent_t;
type user_x11_focusout_xevent_t;
type user_x11_foucusin_xevent_t;
type user_x11_mapnotify_xevent_t;
type user_x11_reparentnotify_xevent_t;
type user_x11_expose_xevent_t;
type user_x11_leavenotify_xevent_t;
type user_x11_selectionnotify_xevent_t;
type user_x11_selectionrequest_xevent_t;
type user_x11_unmapnotify_xevent_t;

NO derived x_extension types are used.

Property types required from the x_contexts file:
type user_undefined_xproperty_t;
type user_wm_name_xproperty_t;
type user_string_xproperty_t;
type user_wm_class_xproperty_t;
type user_wm_client_machine_xproperty_t;
type user_wm_command_xproperty_t;
type user_wm_hints_xproperty_t;
type user_wm_normal_hints_xproperty_t;

Selection types required from the x_contexts file:

Page 109

The SELinux Notebook - Sample Policy Source

type user_primary_xselection_t;
type user_undefined_xselection_t;
End Derived type entries

Allow executable to move into the x_select_paste_t domain
using runcon for the type transition:
role unconfined_r types { x_select_paste_t };
allow x_select_paste_t unconfined_t : file entrypoint;
allow unconfined_t x_select_paste_t : process transition;

#
Start object type_transition for derived types
#
Need type_transition entry for each of the derived type entries defined
above. The format is as follows:
#type_transition <source_domain> <target_type> : <object_class>
<default_type>
#
type_transition the x_drawable object to our domain:
type_transition x_select_paste_t unconfined_t : x_drawable x_select_paste_t;

Event types required from the x_contexts file:
type_transition x_select_paste_t x11_destroynotify_xevent_t : x_event
user_x11_destroynotify_xevent_t;
type_transition x_select_paste_t x11_propertynotify_xevent_t : x_event
user_x11_propertynotify_xevent_t;
type_transition x_select_paste_t x11_confignotify_xevent_t : x_event
user_x11_confignotify_xevent_t;
type_transition x_select_paste_t x11_enternotify_xevent_t : x_event
user_x11_enternotify_xevent_t;
type_transition x_select_paste_t x11_focusout_xevent_t : x_event
user_x11_focusout_xevent_t;
type_transition x_select_paste_t x11_foucusin_xevent_t : x_event
user_x11_foucusin_xevent_t;
type_transition x_select_paste_t x11_mapnotify_xevent_t : x_event
user_x11_mapnotify_xevent_t;
type_transition x_select_paste_t x11_reparentnotify_xevent_t : x_event
user_x11_reparentnotify_xevent_t;
type_transition x_select_paste_t x11_expose_xevent_t : x_event
user_x11_expose_xevent_t;
type_transition x_select_paste_t x11_leavenotify_xevent_t : x_event
user_x11_leavenotify_xevent_t;
type_transition x_select_paste_t x11_selectionnotify_xevent_t : x_event
user_x11_selectionnotify_xevent_t;
type_transition x_select_paste_t x11_selectionrequest_xevent_t : x_event
user_x11_selectionrequest_xevent_t;
type_transition x_select_paste_t x11_unmapnotify_xevent_t : x_event
user_x11_unmapnotify_xevent_t;

As each Window has its own properties it is important to make sure
the undefined_xproperty_t is transitioned to the user domain:
type_transition x_select_paste_t undefined_xproperty_t : x_property
user_undefined_xproperty_t;

These booleans are needed to allow the application name and context to
be displayed in the title bar in the window when using polyinstantiated
selections. Could not figure out how else to fix this !!
if (!poly-selection) {
Don't transition this object if title bar info to be displayed when using
polyinstantiated selections:

type_transition x_select_paste_t wm_name_xproperty_t : x_property
user_wm_name_xproperty_t;
}
if (poly-selection) {
Also need this to allow info to be displayed:

allow x_select_paste_t wm_name_xproperty_t:x_property { write create };
}
####

type_transition x_select_paste_t string_xproperty_t : x_property
user_string_xproperty_t;
type_transition x_select_paste_t wm_class_xproperty_t : x_property
user_wm_class_xproperty_t;

Page 110

The SELinux Notebook - Sample Policy Source

type_transition x_select_paste_t wm_client_machine_xproperty_t : x_property
user_wm_client_machine_xproperty_t;
type_transition x_select_paste_t wm_command_xproperty_t : x_property
user_wm_command_xproperty_t;
type_transition x_select_paste_t wm_hints_xproperty_t : x_property
user_wm_hints_xproperty_t;
type_transition x_select_paste_t wm_normal_hints_xproperty_t : x_property
user_wm_normal_hints_xproperty_t;

Selection types required from the x_contexts file:
primary_xselection_t does not have any effect at all:
type_transition x_select_paste_t primary_xselection_t : x_selection
user_primary_xselection_t;
type_transition x_select_paste_t undefined_xselection_t : x_selection
user_undefined_xselection_t;
#
End object type_transition
#

#
Boolean "poly-selection" set to "TRUE" for conditional policy rules
#
if (poly-selection) {

This type_member rules enforces polyinstantiation of the
"poly_selection PRIMARY primary_xselection_t" x_contexts entry:
type_member x_select_paste_t primary_xselection_t : x_selection

x_select_paste_t;
Additional allow rules:
allow x_select_paste_t self:x_selection { getattr setattr read };

This one stops the title bar being displayed in the Window:
type_member x_select_paste_t user_wm_name_xproperty_t : x_property
x_select_paste_t;
allow x_select_paste_t self:x_property { write create };

}

#
End Boolean "poly-selection" conditional policy rules
#

#
Standard allow rules to display results, write logs etc. etc.
#
Allow the test applications to write to log files:
allow x_select_paste_t unconfined_t : dir write;
allow x_select_paste_t unconfined_t : dir add_name;
allow x_select_paste_t unconfined_t : file create;

Usual stuff for shared libraries, signals etc.
allow unconfined_t x_select_paste_t : dir search;
allow unconfined_t x_select_paste_t : process { siginh signal rlimitinh
noatsecure };
allow unconfined_t x_select_paste_t : file read;

allow x_select_paste_t unconfined_t : chr_file { read write getattr };
allow x_select_paste_t unconfined_t : dir { search getattr };
allow x_select_paste_t unconfined_t : fd use;
allow x_select_paste_t unconfined_t : process sigchld;
allow x_select_paste_t unconfined_t : file { read getattr execute };
allow x_select_paste_t unconfined_t : lnk_file read;
allow x_select_paste_t unconfined_t : unix_stream_socket connectto;
allow x_select_paste_t unconfined_t : filesystem getattr;
allow x_select_paste_t unconfined_t : file write;
allow x_select_paste_t unconfined_t : security check_context;

allow x_select_paste_t self : dir search;
allow x_select_paste_t self : file read;
allow x_select_paste_t self : unix_stream_socket { create connect getattr
read write };
allow x_select_paste_t self : process signal;

#

Page 111

The SELinux Notebook - Sample Policy Source

################ Start allow rules for derived objects ################
########## This first batch are for the X-select application ##########
#
dontaudit unconfined_t x_select_paste_t : lnk_file read;
dontaudit unconfined_t x_select_paste_t : fd use;
dontaudit unconfined_t x_select_paste_t : fifo_file read;

allow x_select_paste_t unconfined_t : x_keyboard { getattr read };
allow x_select_paste_t unconfined_t : x_pointer { getattr read };
allow x_select_paste_t self : x_gc { create setattr };
allow x_select_paste_t self : x_resource read;

allow x_select_paste_t unconfined_t : x_drawable { get_property getattr
add_child };
allow x_select_paste_t self : x_drawable { create blend setattr receive
getattr set_property list_property show };

allow x_select_paste_t big-requests_xextension_t : x_extension { query use };
allow x_select_paste_t selinux_xextension_t : x_extension { query use };
allow x_select_paste_t xkeyboard_xextension_t : x_extension { query use };
allow x_select_paste_t xinputextension_xextension_t : x_extension { query use
};
allow x_select_paste_t undefined_xextension_t : x_extension { query use };

Need this to select data but note it is not user_primary_xselection_t:
allow x_select_paste_t primary_xselection_t : x_selection setattr;

allow x_select_paste_t resource_manager_xproperty_t : x_property read;
allow x_select_paste_t user_undefined_xproperty_t : x_property { write create
};
allow x_select_paste_t user_wm_client_machine_xproperty_t : x_property
{ write create };
allow x_select_paste_t user_wm_name_xproperty_t : x_property { write
create };

allow x_select_paste_t user_x11_destroynotify_xevent_t : x_event receive;

#
These are for the X-paste application
#

allow x_select_paste_t self : x_drawable get_property;
allow x_select_paste_t self : x_client getattr;
allow x_select_paste_t unconfined_t : x_drawable setattr;

Need this to read data but note it is not user_primary_xselection_t:
allow x_select_paste_t primary_xselection_t : x_selection { getattr read };

Need this to allow the derived method to display the app name & context
on title bar:
allow unconfined_t user_wm_name_xproperty_t : x_property read;
dontaudit unconfined_t user_wm_client_machine_xproperty_t : x_property read;

allow x_select_paste_t user_wm_name_xproperty_t : x_property getattr;
allow x_select_paste_t wm_name_xproperty_t : x_property getattr;
allow x_select_paste_t string_xproperty_t : x_property read;
allow x_select_paste_t user_string_xproperty_t : x_property { write create
read };

dontaudit unconfined_t user_x11_propertynotify_xevent_t : x_event receive;
dontaudit unconfined_t user_x11_reparentnotify_xevent_t : x_event receive;
dontaudit unconfined_t user_x11_confignotify_xevent_t : x_event receive;
dontaudit unconfined_t user_x11_confignotify_xevent_t : x_synthetic_event
{ send receive };
dontaudit unconfined_t user_x11_focusout_xevent_t : x_event receive;
dontaudit unconfined_t user_x11_foucusin_xevent_t : x_event receive;
dontaudit unconfined_t user_x11_mapnotify_xevent_t : x_event receive;
dontaudit unconfined_t user_x11_unmapnotify_xevent_t : x_event receive;
dontaudit unconfined_t user_x11_enternotify_xevent_t:x_event receive;
dontaudit unconfined_t user_x11_leavenotify_xevent_t:x_event receive;
dontaudit unconfined_t user_x11_destroynotify_xevent_t : x_event receive;
dontaudit unconfined_t user_x11_expose_xevent_t:x_event receive;

allow x_select_paste_t user_x11_propertynotify_xevent_t : x_event receive;
allow x_select_paste_t user_x11_reparentnotify_xevent_t : x_event receive;

Page 112

The SELinux Notebook - Sample Policy Source

allow x_select_paste_t user_x11_confignotify_xevent_t : x_event receive;
allow x_select_paste_t user_x11_confignotify_xevent_t : x_synthetic_event
receive;
allow x_select_paste_t user_x11_focusout_xevent_t : x_event receive;
allow x_select_paste_t user_x11_foucusin_xevent_t : x_event receive;
allow x_select_paste_t user_x11_mapnotify_xevent_t : x_event receive;
allow x_select_paste_t user_x11_unmapnotify_xevent_t : x_event receive;
allow x_select_paste_t user_x11_enternotify_xevent_t : x_event receive;
allow x_select_paste_t user_x11_expose_xevent_t : x_event receive;
allow x_select_paste_t user_x11_leavenotify_xevent_t : x_event receive;
#
################ End allow rules for derived objects ################
#

This rule will allow the small X-window to be displayed. Change to the
dontaudit rules to stop this being displayed.
allow unconfined_t x_select_paste_t : x_drawable { get_property receive
getattr manage set_property setattr send show read list_child };

#dontaudit unconfined_t x_select_paste_t : x_drawable { get_property receive
getattr manage set_property setattr send show read list_child };

2. Compile and load the policy module using the following SELinux commands:

checkmodule -m x_select_paste.conf -o x_select_paste.mod
semodule_package -o x_select_paste.pp -m x_select_paste.mod
semodule -v -s modular-test -i x_select_paste.pp

3. The policy modules loaded should now consist of the following:

semodule -l
x_context_base 1.0.0
x_select_paste 1.0.0

4. The system is now ready for testing various select / paste scenarios. Note that
by default the poly-selection boolean is set to FALSE and the
x_contexts-file-with-new-labels file has been installed as the
/etc/selinux/modular-test/contexts/x_contexts file.

4.3.4 Testing Derived Labels
The following steps will determine if the test set-up is correct:

7. Check the correct modules are loaded by:

semodule -l
x_context_base 1.0.0
x_select_paste 1.0.0

8. Check the Boolean is set correctly by:

getsebool poly-selection
poly-selection --> off

If 'on', then run:
setsebool -P poly-selection false

9. Ensure the correct x_contexts file is installed. This can be done by
checking that there are no poly_ entries in the

Page 113

The SELinux Notebook - Sample Policy Source

/etc/selinux/modular-test/contexts/x_contexts file. If the
file is not correct, then copy the correct version over by:

cp $HOME/notebook-source/x-windows/x-contexts-base-module/x_contexts-file-
with-new-labels /etc/selinux/modular-test/contexts/x_contexts

10. If the X-select and X-paste applications were not built as described in the
Building the X-select and X-paste Applications section, then the executables
can be copied from the ./notebook-source/x-
windows/x_select+paste directory to the /usr/local/bin
directory. They should default to unconfined_t that can be checked as
follows:

ls -Z /usr/local/bin
-rwxr-xr-x. root root system_u:object_r:unconfined_t X-paste
-rwxr-xr-x. root root system_u:object_r:unconfined_t X-select

11. Open two virtual terminal sessions so that the applications can be run. A third
can be opened for monitoring the audit log for errors.

12. Run setenforce 1 for enforcing mode.

Test 1:
The X-select and X-paste applications are called directly, one in each terminal session
and will therefore run under the unconfined_t domain:

Terminal 1: X-paste
Terminal 2: X-select

The results can be seen in Figure 4.1 above where "Hello World" is displayed on
Terminal 1 (note that if any text has been selected by another window, then that text
will probably be displayed instead of "Hello World").

There is other information displayed that shows the various context information using
the SELinuxGet.. functions that can be examined if required.

To exit the applications 'Ctrl c' is used.

Test 2:
The applications are then loaded using runcon:

Terminal 1: runcon -t x_select_paste_t X-paste
Terminal 2: runcon -t x_select_paste_t X-select

The results can be seen in Figure 4.2 where "Hello World" is displayed on Terminal
1.

Page 114

The SELinux Notebook - Sample Policy Source

Test 3:
The applications are then loaded as follows:

Terminal 1: runcon -t x_select_paste_t X-paste
Terminal 2: X-select

As shown in Figure 4.3, the X-paste application still receives "Hello World", showing
that selections are not blocked.

Page 115

Figure 4.2: Running Test 2 - With X-select and X-paste using standard
x_contexts entries in the x_select_paste_t domain.

The SELinux Notebook - Sample Policy Source

Test 4:
With this test the poly-selection boolean is set to TRUE:

setsebool -P poly-selection true

The applications are then loaded as follows:

Terminal 1: runcon -t x_select_paste_t X-paste
Terminal 2: X-select

The results are the same as Test 3 in that “Hello World” is displayed.

4.3.4.1 Derived Object Test Conclusions

As can be seen the selected text can be pasted from both the unconfined_t and
x_select_paste_t domains. This means that using standard reference policy
type x_contexts file entries for selections, separation cannot be achieved (although
note that the MLS version of reference policy may do - need to check one day).

If the policy is analysed, it will be seen that even though a type transition has been
defined for the primary_xselection_t object:

Extracts from the x_select_paste.conf policy:

Page 116

Figure 4.3: Running Test 3 - With X-select (unconfined_t) and X-paste
(x_select_paste_t) using standard x_contexts entries.

The SELinux Notebook - Sample Policy Source

Added type with derived name to transition new object
instances:
type user_primary_xselection_t;

Added type transition for the object:
type_transition x_select_paste_t primary_xselection_t :
 x_selection user_primary_xselection_t;

a new object is never created:

audit2allow never indicated that an allow rule was needed
like this (that would be required if a new instance was
created)
allow x_select_paste_t user_ primary_xselection_t : x_selection { read ... };

4.3.5 Testing Polyinstantiated Labels
The following steps will determine if the test set-up is correct:

1. Check the correct modules are loaded by:

semodule -l
x_context_base 1.0.0
x_select_paste 1.0.0

2. Check the Boolean is set correctly by:

getsebool poly-selection
poly-selection --> on

If 'on', then run:
setsebool -P poly-selection true

3. Ensure the correct x_contexts file is installed. This can be done by
checking that there are poly_ entries in the /etc/selinux/modular-
test/contexts/x_contexts file. If the file is not correct, then copy the
correct version over by:

cp $HOME/notebook-source/x-windows/x-contexts-base-module/x_contexts-file-
with-new-polylabels /etc/selinux/modular-test/contexts/x_contexts

4. If the X-select and X-paste applications were not built as described in the
Building the X-select and X-paste Applications section, then the executables
can be copied from the ./notebook-source/x-
windows/x_select+paste directory to the /usr/local/bin
directory. They should default to unconfined_t that can be checked as
follows:

ls -Z /usr/local/bin
-rwxr-xr-x. root root system_u:object_r:unconfined_t X-paste
-rwxr-xr-x. root root system_u:object_r:unconfined_t X-select

Page 117

The SELinux Notebook - Sample Policy Source

5. Open two virtual terminal sessions so that the applications can be run. A third
can be opened for monitoring the audit log for errors.

6. Run setenforce 1 for enforcing mode.

Test 1:
The X-select and X-paste applications are called directly, one in each terminal session
and will therefore run under the unconfined_t domain:

Terminal 1: X-paste
Terminal 2: X-select

The results can be seen in Figure 4.4 where "Hello World" is displayed on Terminal
1 (note that if any text has been selected by another window, then that text will
probably be displayed instead of "Hello World").

There is other information displayed that shows the various context information using
the SELinuxGet.. functions that can be examined if required.

To exit the applications 'Ctrl c' is used.

Test 2:
The applications are then loaded using runcon:

Terminal 1: runcon -t x_select_paste_t X-paste

Page 118

Figure 4.4: Running Test 1 - With X-select and X-paste using polyinstantiated
x_contexts entries in the unconfined_t domain.

The SELinux Notebook - Sample Policy Source

Terminal 2: runcon -t x_select_paste_t X-select
The results can be seen in where "Hello World" is displayed on Terminal 1.

Test 3:
The applications are then loaded as follows:

Terminal 1: runcon -t x_select_paste_t X-paste
Terminal 2: X-select

As shown in Figure 4.6, the X-paste application does NOT receive "Hello World” as
the selections are blocked by the polyinstantiation functionality.

Page 119

Figure 4.5: Running Test 2 - With X-select and X-paste using polyinstantiated
x_contexts entries in the x_select_paste_t domain.

The SELinux Notebook - Sample Policy Source

Test 4:
With this test the poly-selection boolean is set to FALSE:

setsebool -P poly-selection false

The applications are then loaded as follows:

Terminal 1: runcon -t x_select_paste_t X-paste
Terminal 2: X-select

As shown in Figure 4.7, the X-paste application running on terminal 1 does not
receive "Hello World” for the following reasons:

1. The selections are being detected by the X-paste application because the
type_member rule has been disabled, therefore polyinstantiation is not
being enforced by the policy (as to enforce polyinstantiation both the poly_
entries in the x_contexts file is required plus a supporting type_member
rule (and of course any allow rules)).

2. The application name and context is not displayed in the X-Window title bar
and the terminal screen shows two error returns when getting the property
context entries as shown below (the resourceID: 39 is WM_NAME - see
Xatom.h).

Calling SELinuxGetPropertyContext (12) with WM_NAME for Property Owner Window:

Page 120

Figure 4.6: Running Test 3 - With X-select (unconfined_t) and X-paste
(x_select_paste_t) using polyinstantiated x_contexts entries.

The SELinux Notebook - Sample Policy Source

The SELinuxGetPropertyContext (12) function returned an _XReply error:
BadMatch - Lookup failed for resourceID: 39

Calling SELinuxGetPropertyDataContext (13) with WM_NAME for Property Owner Window:
The SELinuxGetPropertyDataContext (13) function returned an _XReply error:
BadMatch - Lookup failed for resourceID: 39

3. If apol is used to view the Conditional Expressions for the policy, the
following will be seen:

conditional expression 1: [poly-selection]

TRUE list:
allow x_select_paste_t wm_name_xproperty_t : x_property { write create }; [Disabled]
allow x_select_paste_t x_select_paste_t : x_selection { getattr setattr read }; [Disabled]
type_member x_select_paste_t primary_xselection_t : x_selection x_select_paste_t; [Disabled]

FALSE list:
type_transition x_select_paste_t wm_name_xproperty_t : x_property user_wm_name_xproperty_t;

Whereas, they should be:

conditional expression 1: [poly-selection]

TRUE list:
allow x_select_paste_t wm_name_xproperty_t : x_property { write create }; [Enabled]
allow x_select_paste_t x_select_paste_t : x_selection { getattr setattr read }; [Enabled]
type_member x_select_paste_t primary_xselection_t : x_selection x_select_paste_t; [Enabled]

FALSE list:
type_transition x_select_paste_t wm_name_xproperty_t : x_property user_wm_name_xproperty_t;

Page 121

Figure 4.7: Running Test 4 - With X-select (unconfined_t) and X-paste
(x_select_paste_t) using polyinstantiated x_contexts entries.

The SELinux Notebook - Sample Policy Source

4.3.5.1 Polyinstantiated Object Test Conclusions

As can be seen the selected text cannot be pasted between the unconfined_t and
x_select_paste_t domains. This means that using polyinstantiated entries will
allow selections to be isolated.

If the policy is analysed, it will be seen that the policy enforces the separation with a
type member rule. The X-Windows object manager / XACE manages the actual
selection polyinstantiation.

Extracts from the x_select_paste.conf policy:

This type_member rules enforces polyinstantiation of the
"poly_selection PRIMARY primary_xselection_t" x_contexts entry:
type_member x_select_paste_t primary_xselection_t : x_selection
x_select_paste_t;

Additional allow rules:
allow x_select_paste_t self:x_selection { getattr setattr read };

4.4 Building the XSELinux Function Test Application
The X-setest application allows a user to execute all of the SELinuxGet/Set..
functions that are integrated with the X-Windows object manager. The application is
shown in Figure 4.8 and should be easy to drive.

This application does not require any specific policy module to run, however it will
require permissions to be granted if you want to obtain information when running in
other domains than the default. This has been tested with the Reference Policy once
the X-windows object manager is running by setting the

Page 122

Figure 4.8: X-setest menu - Each XSELinux function can be executed and the
domain context and window ID can be displayed.

The SELinux Notebook - Sample Policy Source

xserver_object_manager boolean to TRUE. Important note - The new
x_keyboard and x_pointer object classes and their permissions must be be
available. Red Hat F-12 builds from release selinux-policy-3.6.32-
99.fc12 will have these added.

The Calling the XSELinux Functions section explains some of the issues around error
handling and the source code has plenty of comments.

The functions 12, 13, 19, 20 & 22 return an XError of BadAlloc when access is
denied and generates a USER_AVC entry in the audit.log. Note however, XErrors
are checked first and are not logged in audit.log, only USER_AVC errors will be
logged

When entering Atom names, the application will check if they are valid, however they
are NOTchecked to see if they are valid for the specific function (e.g. PRIMARY can
be entered for a GetProperty... function, but it will fail with BadMatch).

Window and Resource IDs entered are not checked by the application and if incorrect
the function will fail with BadMatch.

The 'o' option allows an output file to be specified to log the session, only minimum
information is then displayed on the screen.

The application requires the following to be installed if recompiled:

• libX11, libX11-common, libX11-devel - These are standard Xlib
packages.

• libXi, libXi-devel - These are required for retrieving Xdevice
information.

• The XSELinuxOMFunctions.c and Xlib-selinux.h files that are
located in the ./x-windows/x-common directory. The contents of these
files are shown in the Building the X-select and X-paste Applications section.

The application source code is available at ./x-windows/x-setest/X-
setest.c and is as follows:

/**/
/* */
/* The XSELinux test application for the Notebook X-Windows demos. */
/* It makes use of the functions in XSELinuxOMFunctions.c. */
/* They are used to retrieve contexts and add them as required for the */
/* X-Windows Object Manager test examples. */
/* */
/* Copyright (C) 2010 Richard Haines */
/* */
/* This program is free software: you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* */
/**/

#include <X11/Xlib.h>

Page 123

The SELinux Notebook - Sample Policy Source

#include <X11/Xatom.h>
#include <X11/Xlibint.h>
#include <X11/Xutil.h>
#include <X11/extensions/XInput2.h>

#include <stdio.h>
#include <stdlib.h>

#include <selinux/selinux.h>
#include "../x-common/Xlib-selinux.h"

#define ENFORCING 1

// The Error handler functions are in XSELinuxOMFunctions.c
extern int CatchXErrorHandler ();

extern int CatchXreplyErrorHandler ();

//Hold the opcode from the XQueryExtension call in XSELinuxOMFunctions.c
extern int X_SELinuxExtensionOpcode;

// Set output to stdout, but allow output to a file with option 'o'
// Declared here as used by functions in XSELinuxOMFunctions.c to output info
FILE *outputPtr;

// Display the selection menu
int Menu ()
{

printf ("\nXSELinux Functions:\n");
printf ("0) QueryVersion\n");
printf ("1) SetDeviceCreateContext (context) 2)

GetDeviceCreateContext\n");
printf ("3) SetDeviceContext (device+context) 4) GetDeviceContext (lists

all)\n");
printf ("5) SetWindowCreateContext (context) 6)

GetWindowCreateContext\n");
printf ("7) GetWindowContext (win_id)\n");
printf ("8) SetPropertyCreateContext (context) 9)

GetPropertyCreateContext\n");
printf ("10) SetPropertyUseContext (context) 11)

GetPropertyUseContext\n");
printf ("12) GetPropertyContext (win_id+atom) 13) GetPropertyDataContext

(win_id+atom)\n");
printf ("14) ListProperties (win_id)\n");
printf ("15) SetSelectionCreateContext (context) 16)

GetSelectionCreateContext\n");
printf ("17) SetSelectionUseContext (context) 18)

GetSelectionUseContext\n");
printf ("19) GetSelectionContext (atom) 20) GetSelectionDataContext

(atom)\n");
printf ("21) ListSelections\n");
printf ("22) GetClientContext (resource_id)\n");
printf ("\n");
printf ("d) Display domain context h) Help\n");
printf ("m) Display menu o) Set output file\n");
printf ("q) Quit w) Display windowID\n");
return 0;

}

// Display info
int Help ()
{

printf ("X-setest information:\n");
printf ("The SELinux X-Windows Object Manager (XSelinux) has a number of

built-in\n");
printf ("functions that can be called by SELinux-aware applications to Get..

and\n");
printf ("Set.. information. This application will allow each of these

functions to be\n");
printf ("called and display any information and/or error messages that are

generated.\n");

printf ("\nThe functions 12, 13, 19, 20 & 22 return an XError of BadAlloc when
access\n");

printf ("is denied and generates a USER_AVC entry in the audit.log.\n");

Page 124

The SELinux Notebook - Sample Policy Source

printf ("Note: XErrors are checked first and not logged in audit.log, only AVC
errors\n");

printf ("with entries such as \"for
request=SELinux:SELinuxGetClientContext\".\n");

printf ("\nWhen entering Atom names, they are checked for validity, however
they are NOT\n");

printf ("checked to see if they are valid for the specific function (e.g. you
can enter\n");

printf ("PRIMARY for a GetProperty... function, but it will fail with
BadMatch).\n");

printf ("\nNote that Window and Resource IDs entered are not checked by X-
setest and if\n");

printf ("incorrect the function will fail with BadMatch.\n");

printf ("\nThe 'o' option allows an output file to be specified to log the
session\n");

printf ("however, only minimum information is then displayed on the
screen.\n");
}

int main (int argc, char **argv)
{
char answer1 [80], answer2 [80], outFileName [80], windowNameString [100] = " ";
int result, counter, ndevices;
unsigned long resourceID, deviceID;
int event, error, index;
security_context_t domainContext;
Atom atomName;
Window windowID;
XTextProperty windowName;
XIDeviceInfo *devices, device;
char *windowNamePtr;

// Set output to stdout, but allow output to a file with option 'o'
outputPtr = stdout;

// Get a display handle
Display *dpy = XOpenDisplay (NULL);

// Get the SELinux Extension opcode
if (!XQueryExtension (dpy, "SELinux", &X_SELinuxExtensionOpcode, &event,

&error)) {
perror ("XSELinux extension not available");
exit (1);

}
else

printf ("\nXQueryExtension for XSELinux Extension - Opcode: %d Events: %d
Error: %d \n", X_SELinuxExtensionOpcode, event, error);
// Have XSELinux Object Manager

// Set our own handler for errors as the default displays error and exits.
XSetErrorHandler (CatchXErrorHandler);

// Set our own handler for _XReply errors.
XExtCodes *codes = XInitExtension (dpy, "SELinux");
XESetError (dpy, codes->extension, CatchXreplyErrorHandler);

// Now open a window
Window w = XCreateSimpleWindow (dpy, DefaultRootWindow (dpy), 0, 0, 500, 50,

0, 0, 0);

// Get and print Client context information
 if (result = getcon (&domainContext) < 0) {
 perror ("Could not get Client context");
 exit (1);
 }

printf ("\nlibselinux getcon - Domain Context: %s for WinID: %d\n",
domainContext, w);

sprintf (windowNameString, "%s - %s", argv[0], domainContext);

// Show the app name and SELinux context in the Window

Page 125

The SELinux Notebook - Sample Policy Source

windowNamePtr = windowNameString;
if (XStringListToTextProperty((char **)&windowNamePtr, 1, &windowName) == 0) {

perror ("Structure allocation for windowName failed");
exit (1);

}
XSetWMProperties (dpy, w, &windowName, NULL, NULL, 0, NULL, NULL, NULL);

// freecon (domainContext);
XSelectInput (dpy, w, StructureNotifyMask);
XMapWindow (dpy, w);
XFlush (dpy);

// Display menu
Menu ();

// and wait for input
for (;;) {

if (security_getenforce () == ENFORCING)
printf ("SELinux is currently in Enforcing mode\n");

else
printf ("SELinux is currently in Permissive mode\n");

printf ("\nSelect a function or \'m\' to redisplay the menu: ");
fgets (answer1, sizeof(answer1), stdin);
switch (answer1 [0]) {
case 'd':

fprintf (outputPtr, "This Domain Context: %s\n", domainContext);
break;

case 'h':
Help ();
break;

case 'm':
Menu ();
break;

case 'q':
fflush (outputPtr);
exit (0);
break;

case 'w':
fprintf (outputPtr, "This WindowID: %d\n", w);
break;

case 'o':
printf ("\nFilename for output or return for screen output: ");
fgets (outFileName, sizeof(outFileName), stdin);
outFileName [strlen (outFileName) - 1] = '\0';
if (strlen (outFileName) == 0)

outputPtr = stdout;
else if ((outputPtr = fopen (outFileName, "w")) == NULL) {

fprintf (stderr, "Cannot open output file %s\n", outFileName);
outputPtr = stdout;

}
if (outputPtr != stdout)

printf("\nOutput to file: %s\n", outFileName);

if (security_getenforce () == ENFORCING)
fprintf (outputPtr, "SELinux is in Enforcing mode\n");

else
fprintf (outputPtr, "SELinux is in Permissive mode\n");

break;

default:
index = atoi (answer1);
switch (index) {
case 0:

fprintf (outputPtr, "\nCalling SELinuxQueryVersion (0) for this
display:\n");

SELinuxQueryVersion (dpy);
break;

case 1:
// Get Context
printf ("Enter Device Create Context: ");
fgets (answer1, sizeof(answer1), stdin);
// Remove cr
answer1 [strlen (answer1) - 1] = 0;
fprintf (outputPtr, "\nCalling SELinuxSetDeviceCreateContext (1)

for this display\n");

Page 126

The SELinux Notebook - Sample Policy Source

SELinuxSetDeviceCreateContext (dpy, answer1);
break;

case 2:
fprintf (outputPtr, "\nCalling SELinuxGetDeviceCreateContext (2)

for this display:\n");
SELinuxGetDeviceCreateContext (dpy);
break;

case 3:
// Get Context
printf ("Enter Device Context: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
// Get Device ID
printf("Enter Device ID: ");
fgets (answer2, sizeof(answer2), stdin);
deviceID = atoi (answer2);
fprintf (outputPtr, "\nCalling SELinuxSetDeviceContext (3) for

this display\n");
SELinuxSetDeviceContext (dpy, answer1, deviceID);
break;

case 4:
fprintf (outputPtr, "\nCalling SELinuxGetDeviceContext (4) for

this display:\n", w);
devices = XIQueryDevice(dpy, XIAllDevices, &ndevices);
for (counter = 0; counter < ndevices; counter++) {

device = devices[counter];
fprintf (outputPtr, "\nDevice %s is a ", device.name);
switch(device.use) {
case XIMasterPointer:

fprintf (outputPtr, "master pointer\n");
break;

case XIMasterKeyboard:
fprintf (outputPtr, "master keyboard\n");
break;

case XISlavePointer:
fprintf (outputPtr, "slave pointer\n");
break;

case XISlaveKeyboard:
fprintf (outputPtr, "slave keyboard\n");
break;

case XIFloatingSlave:
fprintf (outputPtr, "floating slave\n");
break;

}
SELinuxGetDeviceContext (dpy, device.deviceid);

}
XIFreeDeviceInfo (devices);
break;

case 5:
// Get Context
printf ("Enter Window Create Context: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
fprintf (outputPtr, "\nCalling SELinuxSetWindowCreateContext (5)

for this display\n");
SELinuxSetWindowCreateContext (dpy, answer1);
break;

case 6:
fprintf (outputPtr, "\nCalling SELinuxGetWindowCreateContext (6)

for this display:\n");
SELinuxGetWindowCreateContext (dpy);
break;

case 7:
// Get WinID:
printf ("Enter Window ID or return for this window: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
if (answer1 [0] == 0)

windowID = w;
else

windowID = (atoi (answer1));

fprintf (outputPtr, "\nCalling SELinuxGetWindowContext (7) for
Window (WinID: %d):\n", windowID);

SELinuxGetWindowContext (dpy, windowID);

Page 127

The SELinux Notebook - Sample Policy Source

break;
case 8:

// Get Context
printf ("Enter Property Create Context: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
fprintf (outputPtr, "\nCalling SELinuxSetPropertyCreateContext (8)

for this display\n");
SELinuxSetPropertyCreateContext (dpy, answer1);
break;

case 9:
fprintf (outputPtr, "\nCalling SELinuxGetPropertyCreateContext (9)

this display:\n");
SELinuxGetPropertyCreateContext (dpy);
break;

case 10:
// Get Context
printf ("Enter Property Use Context: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
fprintf (outputPtr, "\nCalling SELinuxSetPropertyUseContext (10)

for this display\n");
SELinuxSetPropertyUseContext (dpy, answer1);
break;

case 11:
fprintf (outputPtr, "\nCalling SELinuxGetPropertyUseContext (11)

for this display:\n");
SELinuxGetPropertyUseContext (dpy);
break;

case 12:
// Get WinID:
printf ("Enter Window ID or return for this window: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
if (answer1 [0] == 0)

windowID = w;
else

windowID = (atoi (answer1));

// Get ATOM
printf("Enter Property Atom Name: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
atomName = XInternAtom (dpy, answer1, xTrue);
if (atomName == None) {

printf ("Invalid Atom Name\n");
break;

}
fprintf (outputPtr, "\nCalling SELinuxGetPropertyContext (12) with

%s for Window (WinID: %d):\n", (XGetAtomName (dpy, atomName)), windowID);
SELinuxGetPropertyContext (dpy, windowID, atomName);
break;

case 13:
// Get WinID:
printf ("Enter Window ID or return for this window: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
if (answer1 [0] == 0)

windowID = w;
else

windowID = (atoi (answer1));
// Get ATOM
printf ("Enter Property Atom Name: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
atomName = XInternAtom (dpy, answer1, xTrue);
if (atomName == None) {

printf ("Invalid Atom Name\n");
break;

}
fprintf (outputPtr, "\nCalling SELinuxGetPropertyDataContext (13)

with %s for Window (WinID: %d):\n", (XGetAtomName (dpy, atomName)), windowID);
SELinuxGetPropertyDataContext (dpy, windowID, atomName);

break;
case 14:

Page 128

The SELinux Notebook - Sample Policy Source

// Get WinID:
printf ("Enter Window ID or return for this window: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
if (answer1 [0] == 0)

windowID = w;
else

windowID = (atoi (answer1));
fprintf (outputPtr, "\nCalling SELinuxListProperties (14) for

Window (WinID: %d):\n", windowID);
SELinuxListProperties (dpy, windowID);
break;

case 15:
// Get Context
printf ("Enter Selection Create Context: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen(answer1) - 1] = 0;
fprintf (outputPtr, "\nCalling SELinuxSetSelectionCreateContext

(15) for this display\n");
SELinuxSetSelectionCreateContext (dpy, answer1);
break;

case 16:
fprintf (outputPtr, "\nCalling SELinuxGetSelectionCreateContext

(16) for this display:\n");
SELinuxGetSelectionCreateContext (dpy);
break;

case 17:
// Get Context
printf ("Enter Selection Use Context: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
fprintf (outputPtr, "\nCalling SELinuxSetSelectionUseContext (17)

for this display\n");
SELinuxSetSelectionUseContext (dpy, answer1);
break;

case 18:
fprintf (outputPtr, "\nCalling SELinuxGetSelectionUseContext (18)

for this display:\n");
SELinuxGetSelectionUseContext (dpy);
break;

case 19:
// Get ATOM
printf ("Enter Selection Atom Name: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
atomName = XInternAtom (dpy, answer1, xTrue);
if (atomName == None) {

printf ("Invalid Atom Name\n");
break;

}
fprintf (outputPtr, "\nCalling SELinuxGetSelectionContext (19)

with %s for this display\n", (XGetAtomName (dpy, atomName)));
SELinuxGetSelectionContext (dpy, atomName);
break;

case 20:
// Get ATOM
printf ("Enter Selection Atom Name: ");
fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
atomName = XInternAtom (dpy, answer1, xTrue);
if (atomName == None) {

printf ("Invalid Atom Name\n");
break;

}
fprintf (outputPtr, "\nCalling SELinuxGetSelectionDataContext (20)

with %s for this Window:\n", (XGetAtomName (dpy, atomName)));
SELinuxGetSelectionDataContext (dpy, atomName);
break;

case 21:
fprintf (outputPtr, "\nCalling SELinuxListSelections (21) for this

display:\n");
SELinuxListSelections (dpy);
break;

case 22:
printf ("Enter Resource ID or return for this window: ");

Page 129

The SELinux Notebook - Sample Policy Source

fgets (answer1, sizeof(answer1), stdin);
answer1 [strlen (answer1) - 1] = 0;
if (answer1 [0] == 0)

resourceID = w;
else

resourceID = (atoi (answer1));
fprintf (outputPtr, "\nCalling SELinuxGetClientContext (22) for

this Resource: %d\n", resourceID);
SELinuxGetClientContext (dpy, resourceID);
break;

default:
printf ("\nInvalid Selection\n");
Menu ();
break;

}
}

}
}

The X-setest application can be built using the following command:

gcc X-setest.c ../x-common/XSELinuxOMFunctions.c -o X-setest
 -l selinux -l X11 -l Xi

The X-setest application can be called as follows:

Output all information to the screen:
X-setest

Output all information to a specified file [log_file_name],
with minimum information displayed on the screen:
X-setest [log_file_name]

Page 130

The SELinux Notebook - Sample Policy Source

5. Appendix A - Policy Investigation Tools

5.1 Introduction
This section describes the tools used to investigate the modular-test (base +
ext_gateway + netlabel + int_gateway + move_file modules) policy
for the message filter project during its development, debugging and validation.

Points to note:

1. When viewing a policy via investigation tools such as apol, the rules and
statements that contain permissions, roles etc. have been resolved and will
therefore not look the same as in the original source code. For example in the
ext_gateway.conf module there are two separate but common rules (as
they specify permissions required for that part of the policy):

Allow the client/server to send/recv packets:
allow unconfined_t default_secmark_packet_t : packet { send recv };

Required to allow the iptables to load as needs to relabel:
allow unconfined_t default_secmark_packet_t : packet relabelto;

When they are viewed via the investigation tools, the two rules would have
been amalgamated and displayed as:

allow unconfined_t default_secmark_packet_t : packet { send recv
relabelto };

2. When investigating loadable modules that have had additional configuration
added via semanage (user, port etc.), then the binary policy file will contain
this information. However when using the tools to view the packaged module
source, these changes will not appear (see sechecker for an example).

5.2 Using audit2allow and audit2why
audit2allow is a very useful tool, however it needs to be used with caution as it
gives permissions that are not always required; does not define any types; shows role
transitions as process transitions; and has various other features.

The process used to debug most of the policy revolved around audit2allow and
monitoring the audit log, updating the policy with the results and removing any
permissions thought not to be required, testing the policy and then re-running
audit2allow and so on.

There were times when audit2allow (or anything else for that matter) was of no
help, particularly when the system hung during boot or at login time. It was just a case
of keeping track of the changes, determining the differences and finding a fix.

audit2why is also useful, however it does not like AVC granted messages in the
audit log.

Page 131

The SELinux Notebook - Sample Policy Source

5.3 Using seaudit and setroubleshoot
During the development these audit tools were initially used, however it was found
that after a while it was easier to clear the audit log (>audit.log), then tail it
(tail -f audit.log) and ‘see’ the problem flashing past, run audit2allow
and then interpret the results.

5.4 Using sediffx
The sediff(1) (command line) and sediffx(1) (GUI) compares two policies
and finds the differences between them. These are part of the SETools package and
have extensive help (see the /usr/share/setools-3.3 directory) and man
pages (man sediff and man sediffx) that should be read before using the
tools.

The GUI version was used for testing the modular-test policy as the differences
in two policies needed to be found for the following reason:

• When testing the ext_gateway module, a new role was created called
message_filter_r. This role needed to be associated with a user and can
be achieved by one of two ways:

1. Add a user statement to the policy and associate the role. This
worked with no problems, however as also experimenting with MLS
policies it would mean having two gateway modules (as one user
statement needs level and range, the other does not).

2. Use semanage to associate the user to the new role. This did not
work as expected using the following command:

semanage user -m -R "message_filter_r" user_u

The result was that the policy caused SELinux to lock the system so no login
was possible, therefore the repair disk had to be used to change the policy, as
the system had been configured with the save-previous = true set in
the /etc/selinux/semanage.conf file. Therefore the original (good)
binary policy was available and copied over to the ./modular-
test/policy directory, the system restarted, and the differences
investigated.

To check the differences between the two policies, the original (good) and current
(bad) were loaded as shown in Figure 5.1:

Page 132

The SELinux Notebook - Sample Policy Source

Figure 5.1: Opening the two policies in sediffx
The ‘Run Diff’ was run and Figure 5.2 shows the differences between these two
policies. As can be seen, the unconfined_r role has been removed by the
semanage command:

semanage user -m -R "message_filter_r" user_u

Figure 5.2: sediffx showing the differences in the two policies

The fix for this is to add all the roles when updating a user with semanage as
follows:

semanage user -m -R "message_filter_r unconfined_r" user_u

Page 133

The SELinux Notebook - Sample Policy Source

5.5 Using sechecker
This command line application is part of the SETools package and is used to analyse a
policy for various flaws. It has extensive help and man pages (man sechecker)
that should be read before using the tool.

The sechecker(8) command has a set of pre-built modules5 that can be run
individually or from a profile containing a list of modules (a number of profiles are
supplied – see the /usr/share/setools-3.3 directory that also contains help
files). Each of these modules will check for a specific set of flaws (e.g. find users
without roles).

There are also ‘utility modules’ that find basic information (e.g. find domains) and are
used by the modules when checking for flaws. Each module function is described in
Table 5-2 and Table 5-3 along with comments on the test results for the modular-
test policy. New modules can be written for sechecker, however the source code
is required (that contains a module template source file to help with the development).

Note that some modules will work on packaged modules and source files only (as
they have the attribute identifiers available). Table 5-2 and Table 5-3 has a column
that specifies what type of policy (module, source or binary) each module supports.

5.5.1 Testing the Policy
For testing the modular-test policy, sechecker was run using the modular
source6 policy with the modular-test.profile and using the binary policy with
the modular-test-binary.profile. The two profiles are shown in Table 5-1
(note that the modular-test.profile is in fact a copy of the all-checks-
no-mls.sechecker that is supplied with sechecker).

The reason for running on both types of policy is to show the differences, as the
module source does not contain the user association with the message_filter_r
role, and the binary policy does not show that an attribute is not used by any rules.

modular-test.profile modular-test-binary.profile
<sechecker version="1.1">
<profile>

<module name="find_domains">
<output value="quiet"/>
<option name="domain_attribute">

<item value="domain"/>
</option>

</module>
<module name="find_file_types">

<output value="quiet"/>
<option name="file_type_attribute">

<item value="file_type"/>
</option>

</module>
<module name="domain_and_file">

<output value="short"/>
</module>
<module name="attribs_wo_types">

<output value="short"/>
</module>
<module name="roles_wo_types">

<output value="short"/>
</module>
<module name="users_wo_roles">

<output value="short"/>
</module>
<module name="roles_wo_allow">

<sechecker version="1.1">
<profile>

<module name="roles_wo_types">
<output value="short"/>

</module>

<module name="users_wo_roles">
<output value="short"/>

</module>

<module name="roles_wo_allow">
<output value="short"/>

</module>

<module name="types_wo_allow">
<output value="short"/>

</module>

<module name="roles_wo_users">
<output value="short"/>

</module>

<module name="spurious_audit">
<output value="short"/>

</module>

<module name="inc_mount">

5 Not to be confused with the policy ‘loadable modules’.
6 Actually the packaged modules (base.pp, gateway.pp, netlabel.pp and

move_file.pp.

Page 134

The SELinux Notebook - Sample Policy Source

<output value="short"/>
</module>
<module name="types_wo_allow">

<output value="short"/>
</module>
<module name="attribs_wo_rules">

<output value="short"/>
</module>
<module name="roles_wo_users">

<output value="short"/>
</module>
<module name="spurious_audit">

<output value="short"/>
</module>
<module name="inc_mount">

<output value="short"/>
</module>
<module name="domains_wo_roles">

<output value="short"/>
</module>
<module name="inc_dom_trans">

<output value="short"/>
</module>
<module name="find_net_domains">

<output value="quiet"/>
<option name="net_obj">

<item value="netif"/>
<item value="tcp_socket"/>
<item value="udp_socket"/>
<item value="node"/>
<item value="association"/>

</option>
</module>
<module name="find_port_types">

<output value="quiet"/>
</module>
<module name="find_node_types">

<output value="quiet"/>
</module>
<module name="find_netif_types">

<output value="quiet"/>
</module>
<module name="inc_net_access">

<output value="short"/>
</module>
<module name="unreachable_doms">

<output value="short"/>
</module>

</profile>
</sechecker>

<output value="short"/>
</module>

<module name="inc_net_access">
<output value="short"/>

</module>

</profile>
</sechecker>

Table 5-1: sechecker profiles – The profiles used to check the modular-test packages
and the binary policy files.

The sechecker commands were each run twice, once with –v (for verbose output
that will detail any issues found in gory detail) and once without the –v option:

sechecker --fcfile=/etc/selinux/modular-test/contexts/files/file_contexts -p
modular-test.profile modular-test.list > modular-test-results.txt
sechecker --fcfile=/etc/selinux/modular-test/contexts/files/file_contexts -v -p
modular-test.profile modular-test.list > modular-test-verbose-results.txt
sechecker --fcfile=/etc/selinux/modular-test/contexts/files/file_contexts -p
modular-test-binary.profile /etc/selinux/modular-test/policy/policy.23 >
modular-test-binary-results.txt

sechecker --fcfile=/etc/selinux/modular-test/contexts/files/file_contexts -v -p
modular-test-binary.profile /etc/selinux/modular-test/policy/policy.23 >
modular-test-binary-verbose-results.txt

Note that the binary policy is referenced by its full path name, but the modular policy
is referenced by a file called modular-test.list. The contents of this file is as
follows, and can be built by the apol tool described later:

modular-test lists the modules to be tested:
#
policy_list 1 modular
/etc/selinux/modular-test/modules/active/base.pp

Page 135

The SELinux Notebook - Sample Policy Source

/etc/selinux/modular-test/modules/active/modules/ext_gateway.pp
/etc/selinux/modular-test/modules/active/modules/int_gateway.pp
/etc/selinux/modular-test/modules/active/modules/move_file.pp
/etc/selinux/modular-test/modules/active/modules/netlabel.pp

5.5.2 The Results
The output from the modular-test-binary.profile without the –v option is
shown below, however the main results are shown in:

• Table 5-2 that describes the results for each module and the authors
interpretation / action regarding any policy changes.

• Table 5-3 that describes the results from the utility modules.

Module name: inc_mount Severity: med
This module finds domains that have incomplete mount permissions.
In order for a mount operation to be allowed by the policy the following rules
must be present:
 1) allow somedomain_d sometype_t : filesystem { mount };
 2) allow somedomain_d sometype_t : dir { mounton };

This module finds domains that have only one of the rules listed above.

Found 0 types.
--
Module name: inc_net_access Severity: med
This module finds all network domains in a policy which do not have the
required permissions needed to facilitate network communication. For network
domains to communicate, the following conditions must be true:
 1) the domain must have read or receive permissions on a socket of the same
 type
 2) the domain must have send or receive permissions on an IPsec association
 (see find_assoc_types)
 3) the domain must have send or receive permissions on netif objects for a
 netif type (see find_netif_types)
 4) the domain must have send or receive permissions on node objects for a
 node type (see find_node_types)
 5) the domain must have send or receive permissions on port objects for a
 port type (see find_port_types)

Found 3 network domains with insufficient permissions.

int_gateway_t, ext_gateway_t, unconfined_t
--
Module name: roles_wo_allow Severity: low
This module finds roles defined in the policy that are not used in any role
allow rules. It is not possible to transition to or from any role that does not
have any role allow rules.

Found 0 roles.
--
Module name: roles_wo_types Severity: low
This module finds roles in the policy that have no types. A role with no types
cannot form a valid context.

Found 0 roles.
--
Module name: roles_wo_users Severity: low
This module finds roles that are not assigned to users. If a role is not
assigned to a user it cannot form a valid context.

Found 0 roles.
--
Module name: spurious_audit Severity: low
This module finds audit rules in the policy which do not affect the auditing of
the policy. This could happen in the following situations:
 1) there is an allow rule with the same key and permissions for a dontaudit
 rule
 2) there is an auditallow rule without an allow rule with the same key or
 with permissions that do not appear in an allow rule with the same key.

Page 136

The SELinux Notebook - Sample Policy Source

Found 1 rules.
dontaudit ext_gateway_t unconfined_t : filesystem getattr ;
--
Module name: types_wo_allow Severity: low
This module finds types defined in the policy that are not used in any allow
rules. A type that is never granted an allow rule in the policy is a dead type.
This means that all attempted access to the type will be denied including
attempts to relabel to a (usable) type. The type may need to be removed from
the policy or some intended access should be granted to the type.

Found 1 types.

socket_t
--
Module name: users_wo_roles Severity: low
This module finds all the SELinux users in the policy that have no associated
roles. Users without roles may appear in the label of a file system object;
however, these users cannot login to the system or run any process. Since these
users cannot be used on the system, a policy change is recommended to remove the
users or provide some intended access.

Found 0 users.

Page 137

The SELinux Notebook - Sample Policy Source

Module Name Module Description Valid for Binary,
Module or Source

files

Comments on running sechecker on the modular-
test policy with –v (verbose) option

attribs_wo_rules This module finds attributes in the policy that are not used in any rules;
These attributes will get thrown out by the compiler and have no effect
on the security environment. They are unnecessary and should be
removed.

Modules and
Source only

This module found an attribute called
message_filter_domains that is not used (it
was added to the modules and had the domain types
added).
Decision: The attribute can be removed from the
policy.

attribs_wo_types This module finds attributes in the policy that are not associated with
any types. Attributes without types can cause type fields in rules to
expand to empty sets and thus become unreachable. This makes for
misleading policy source files.

Modules and
Source only

This module did not find any attributes without
types.

domain_and_file This module finds all types in the policy treated as both a domain and a
file type. See find_domains and find_file_types modules
for details about the heuristics used to determine these types. It is
considered bad security practice to use the same type for a domain and
its data objects because it requires that less restrictive access be granted
to these types.

Modules and
Source only

This module found three types associated to domains
and files (unconfined_t, ext_gateway and
int_gateway_t).
This probably occurred in the policy because the
base is all unconfined_t.
Decision: Without building a more complex policy it
is thought that this is an acceptable risk.

domains_wo_roles This module finds all domains in the policy not associated with a role.
These domains cannot have a valid security context. The object_r
role is not considered in this check.

Modules and
Source only

This module did not find any domains without roles.

imp_range_trans This module finds impossible range transitions in a policy. A range
transition is possible if and only if all of the following conditions are
satisfied:
1) there exist TE rules allowing the range transition to occur.
2) there exist RBAC rules allowing the range transition to occur.
3) at least one user must be able to transition to the target MLS range.

Binary,
Modules and

Source

As the modular-test policy is not MLS, then this was
not run.

Page 138

The SELinux Notebook - Sample Policy Source

Module Name Module Description Valid for Binary,
Module or Source

files

Comments on running sechecker on the modular-
test policy with –v (verbose) option

inc_dom_trans This module finds potential domain transitions missing key
permissions. A valid domain transition requires the following:
1) the starting domain can transition to the end domain for class
process.

2) the end domain has some type as an entrypoint.
3) the starting domain can execute that entrypoint type.
4) (optional) a type_transition rule specifying these three types.

Modules and
Source only

This module did not find any incomplete domain
transitions.

inc_mount This module finds domains that have incomplete mount permissions. In
order for a mount operation to be allowed by the policy the following
rules must be present:
1) allow somedomain_d sometype_t : filesystem { mount };
2) allow somedomain_d sometype_t : dir { mounton };

This module finds domains that have only one of the rules listed above.

Binary,
Modules and

Source

This module did not find any domains with
incomplete mount permissions.

inc_net_access This module finds all network domains in a policy which do not have
the required permissions needed to facilitate network communication.
For network domains to communicate, the following conditions must be
true:
1) the domain must have read or receive permissions on a socket of the

same type.
2) the domain must have send or receive permissions on an IPsec

association (see find_assoc_types).
3) the domain must have send or receive permissions on netif

objects for a netif type (see find_netif_types).
4) the domain must have send or receive permissions on node

objects for a node type (see find_node_types).
5) the domain must have send or receive permissions on port

objects for a port type (see find_port_types).

Binary,
Modules and

Source

This module found three network domains with
insufficient permissions (unconfined_t,
ext_gateway_t and int_gateway_t).
Decision: As the policy modules were built for
minimum privilege, adding additional (and not
required) permissions would add no value to the
policy.
--
Note: Try running this module with the NetLabel
loadable module detailed in Appendix B – NetLabel
Module Support for network_peer_controls
as there will then be an additional network domain
found (network_peer_t).

Page 139

The SELinux Notebook - Sample Policy Source

Module Name Module Description Valid for Binary,
Module or Source

files

Comments on running sechecker on the modular-
test policy with –v (verbose) option

roles_wo_allow This module finds roles defined in the policy that are not used in any
role allow rules. It is not possible to transition to or from any role that
does not have any role allow rules.

Binary,
Modules and

Source

This module did not find any roles without an
allow rule.

roles_wo_types This module finds roles in the policy that have no types. A role with no
types cannot form a valid context.

Binary,
Modules and

Source

This module did not find any roles without types.

roles_wo_users This module finds roles that are not assigned to users. If a role is not
assigned to a user it cannot form a valid context.

Binary,
Modules and

Source

On the modular policy files sechecker reported
one role without a user (message_filter_r).
The reason for this is because the user association
(user_u) was added with semanage.
Note: Running sechecker on the binary policy
does not report this error as semanage has added
the association.
Decision: Leave as it is, however sechecker could be
modified at some stage to check the policy store !!.

spurious_audit This module finds audit rules in the policy which do not affect the
auditing of the policy. This could happen in the following situations:
1) there is an allow rule with the same key and permissions for a
dontaudit rule.

2) there is an auditallow rule without an allow rule with the
same key or with permissions that do not appear in an allow rule
with the same key.

Binary,
Modules and

Source

This module found one spurious audit rule:
dontaudit ext_gateway_t unconfined_t :
filesystem getattr ;
Decision: Review policy and update the getattr
permission as required.

types_wo_allow This module finds types defined in the policy that are not used in any
allow rules. A type that is never granted an allow rule in the policy is a
dead type. This means that all attempted access to the type will be
denied including attempts to relabel to a (usable) type. The type may
need to be removed from the policy or some intended access should be
granted to the type.

Binary,
Modules and

Source

This module found one type without and allow rule
(socket_t). This was added to the
netlabel.conf module but never used.
Decision: Remove socket_t.

Page 140

The SELinux Notebook - Sample Policy Source

Module Name Module Description Valid for Binary,
Module or Source

files

Comments on running sechecker on the modular-
test policy with –v (verbose) option

unreachable_doms This module finds all domains in a policy which are unreachable. A
domain is unreachable if any of the following apply:
1) There is insufficient type enforcement policy to allow a transition.
2) There is insufficient RBAC policy to allow a transition.
3) There are no users with proper roles to allow a transition.

However, if any of the above rules indicate an unreachable domain, yet
the domain appears in the system default contexts file, it is considered
reachable.

Modules and
Source only

This module found no unreachable domains.
--
Note: Try running this module with the NetLabel
loadable module detailed in Appendix B – NetLabel
Module Support for network_peer_controls
as there will then be one unreachable domain found
(netlabel_peer_t).
This was never intended as a domain, only a label for
the NetLabel test. It is suspected that they were
found by the find_domains utility module
(Bullet 2 - it is the source of a TE rule for object
class other than filesystem).

users_wo_roles This module finds all the SELinux users in the policy that have no
associated roles. Users without roles may appear in the label of a file
system object; however, these users cannot login to the system or run
any process. Since these users cannot be used on the system, a policy
change is recommended to remove the users or provide some intended
access.

Binary,
Modules and

Source

This module did not find any users without roles.

Table 5-2: Modules in Version 1.1 of sechecker(8) – The Comments column covers the authors interpretation of the test results on the
modular-test policy base and loadable modules using the sechecker modules and profiles.

Page 141

The SELinux Notebook - Sample Policy Source

Module Name Module Description Valid for Binary,
Module or Source

files

Comments on running sechecker on the modular-
test policy with –v (verbose) option

find_assoc_types This module finds types with an unlabeled SID. Binary,
Modules and

Source

This module does not output a report using the
standard profiles, however it can be run with the –v
and –m options as follows:
sechecker –v –m find_assoc_types <policy>

Running this on the modular-test policy will
result in finding unconfined_t as the unlabeled
SID.

find_domains This is a utility module which finds types in a policy that are treated as
a domain. A type is considered a domain if any of the following is
true:
1) it has an attribute associated with domains.
2) it is the source of a TE rule for object class other than
filesystem.

3) it is the default type in a type_transition rule for object class
process.

4) it is associated with a role other than object_r.

Modules and
Source only

This module does not output a report using the
standard profiles, however it can be run with the –v
and –m options as follows:
sechecker –v –m find_domains <policy>

Running this on the modular-test policy will
result in finding four domains (move_file_t,
ext_gateway_t, int_gateway_t and
unconfined_t).

find_file_types This module finds all types in the policy treated as a file type. A type
is considered a file type if any of the following is true:
1) it has an attribute associated with file types.
2) it is the source of a rule to allow filesystem associate

permission.
3) it is the default type of a type transition rule with an object

class other than process.
4) it is specified in a context in the file_contexts file.

Modules and
Source only

This module does not output a report using the
standard profiles, however it can be run with the –v
and –m options as follows:
sechecker –v –m find_file_types <policy>

Running this on the modular-test policy will
result in finding nine file types (out_file_t,
out_queue_t, move_file_exec_t,
in_file_t, in_queue_t,
secure_services_exec_t,
ext_gateway_t, int_gateway_t and
unconfined_t).

Page 142

The SELinux Notebook - Sample Policy Source

Module Name Module Description Valid for Binary,
Module or Source

files

Comments on running sechecker on the modular-
test policy with –v (verbose) option

find_net_domains This module finds all types in a policy considered to be network
domains. A type is considered a network domain if it is the subject of
TE rules involving certain object classes, which are currently defined
as:
1) netif
2) tcp_socket
3) udp_socket
4) node
5) association
These values can be overridden in this module’s profile.

Binary,
Modules and

Source

This module does not output a report using the
standard profiles, however it can be run with the –v
and –m options as follows:
sechecker –v –m find_net_domains <policy>

Running this on the modular-test policy will
result in finding three net domains
(ext_gateway_t, int_gateway_t and
unconfined_t).

find_netif_types This module finds all types in a policy treated as a netif type. A type
is considered a netif type if it is used in the context of a netifcon
statement or the context of the netif initial SID.

Binary,
Modules and

Source

This module does not output a report using the
standard profiles, however it can be run with the –v
and –m options as follows:
sechecker –v –m find_netif_types <policy>

Running this on the modular-test policy will
result in finding that the only use of netif is in the
initial SID for unconfined_t.

find_node_types This module finds all types in a policy treated as a node type. A type is
considered a node type if it is used in the context of a nodecon
statement or the context of the node initial SID.

Binary,
Modules and

Source

This module does not output a report using the
standard profiles, however it can be run with the –v
and –m options as follows:
sechecker –v –m find_node_types <policy>

Running this on the modular-test policy will
result in finding that the only use of node is in the
initial SID for unconfined_t.

Page 143

The SELinux Notebook - Sample Policy Source

Module Name Module Description Valid for Binary,
Module or Source

files

Comments on running sechecker on the modular-
test policy with –v (verbose) option

find_port_types This module finds all types in a policy treated as a port type. A type is
considered a port type if it is used in the context of a portcon
statement or the context of the port initial SID.

Binary,
Modules and

Source

This module does not output a report using the
standard profiles, however it can be run with the –v
and –m options as follows:
sechecker –v –m find_port_types <policy>

Running this on the modular-test policy will
result in finding that the only use of port is in the
initial SID for unconfined_t.

Table 5-3: Utility Modules in Version 1.1 of sechecker(8) – The Comments column covers the authors interpretation of the test results on
the modular-test policy base and loadable modules using the sechecker modules and profiles.

Page 144

The SELinux Notebook - Sample Policy Source

5.6 Using apol
The apol application is part of the SETools package and has extensive help (see the
‘Help’ tab or information in the /usr/share/setools-3.3 directory).

The author had problems displaying all the apol window on the screen but resolved
this as described in the General Information section of volume 1.

The application analyses many different aspects of a policy that are not covered in this
Notebook (the apol documentation is comprehensive though), however to attempt
some analysis of the message filter policy, two scenarios are presented from the
‘Analysis’ tab7 that were carried out using the binary policy file:

1. Direct Relabel - To show what can be relabeled by unconfined_t as the
security policy stated minimum required.

2. Transitive Information Flow - This shows other paths that may be available to
allow information to flow that is not directly enabled by the policy, and could
therefore be used to allow unauthorised access.

The majority of text comes directly from apol as it has a facility to copy the analysis
information to the clipboard.

5.6.1 General Information
The binary policy file was used as this has a complete picture of the policy. The policy
source file could have been used however apol only supports the base or monolithic
source. The other alternative is to use the packaged files that can be opened directly
from the File>Open tab, selecting the Modular policy option, and then selecting the
base module first then Add the other modules to the list as shown in Figure 5.3. This
list may then be exported for future use, with a sample as follows:

policy_list 1 modular
/etc/selinux/modular-test/modules/active/base.pp
/etc/selinux/modular-test/modules/active/modules/ext_gateway.pp
/etc/selinux/modular-test/modules/active/modules/int_gateway.pp
/etc/selinux/modular-test/modules/active/modules/move_file.pp
/etc/selinux/modular-test/modules/active/modules/netlabel.pp

7 The ‘Analysis’ tab requires a ‘permissions’ file to be loaded (via Tools-Open Default Perm
Map) that adds weighting to object permissions (see the apol Help>Information Flow
Analysis tab). However the one supplied (apol_perm_mapping_ver21) does not have all
the new object classes added. The author updated this file (available in source package), however it
made no difference to the findings (not that any were expected !!!).

Page 145

The SELinux Notebook - Sample Policy Source

Figure 5.3: Opening the package policy files for analysis
Once the policy has been opened, a summary can be displayed using the
Query>Policy Summary tabs. Figure 5.4 shows one for each of the possible
options: the packages, the binary policy and the base module source. As stated earlier
the binary policy will be used for analysis.

Page 146

The SELinux Notebook - Sample Policy Source

Figure 5.4: The Modular, Binary and Base Source Policy Summaries

5.6.2 Type Enforcement Rules
Figure 5.5 and Figure 5.6 show how flexible apol can be in searching and analysing a
policy. They show a search for TE Rules (via the Policy Rules>TE Rules
tabs) using a regular expression with the source set to ^un and the target ^in that will
find all rules starting with these characters. Figure 5.5 shows that five rules were found,
however when the Class/Permissions tab is set to select the process class
(Figure 5.6), only two are found.

Page 147

The SELinux Notebook - Sample Policy Source

Figure 5.5: Type Enforcement Rules (1) - Finding TE rules using a regular
expression.

Figure 5.6: Type Enforcement Rules (2) - Finding TE rules using a regular
expression with Class/Permissions tab set to show only the process class.

Page 148

The SELinux Notebook - Sample Policy Source

5.6.3 Direct Relabel
The objective of the direct relabel analysis is to show what can be relabeled by
unconfined_t as this needed to be the least possible. When the policy was written it
was decided to only allow the message filter packets to be relabeled as the iptables
needed to be loaded under unconfined_t and therefore required these permissions.

Note that to be able to

5.6.3.1 apol Direct Relabel Analysis

Direct Relabel Analysis: Subject: unconfined_t
unconfined_t can relabel to 3 type(s) and relabel from 0 type(s).

This tab provides the results of a Direct Relabel Analysis for the subject above. The
results of the analysis are presented in tree form with the root of the tree (this node)
being the starting point for the analysis.

Each child node in the To and From subtrees represents a type in the current policy
which the chosen subject can relabel.

Figure 5.7: Direct Relabel - Subject: unconfined_t

Each of the nodes for the unconfined_t subject are as follows:
default_secmark_packet_t:

unconfined_t can relabel to default_secmark_packet_t
allow unconfined_t default_secmark_packet_t : packet { send recv relabelto } ;

Page 149

The SELinux Notebook - Sample Policy Source

ext_gateway_packet_t:
unconfined_t can relabel to ext_gateway_packet_t
allow unconfined_t ext_gateway_packet_t : packet relabelto ;

int_gateway_packet_t:
unconfined_t can relabel to int_gateway_packet_t
allow unconfined_t int_gateway_packet_t : packet relabelto ;

5.6.4 Transitive Information Flows
This shows other paths that may be available to allow information to flow that is not
directly enabled by the policy, and could therefore be used to allow unauthorised
access. The in_file_t to / from unconfined_t was analysed in an attempt to
write an application that would ‘plant’ a file in the message filters ‘in_queue’ when
in enforcing mode (and assuming no access to the policy build tools). The author failed
miserably8 – any offers !!!!

5.6.4.1 apol Transitive Information Flows Analysis

Transitive Information Flow Analysis: Starting type: in_file_t (To and From)

This tab provides the results of a Transitive Information Flow analysis beginning from
the starting type selected above. The results of the analysis are presented in tree form
with the root of the tree (this node) being the start point for the analysis.

Each child node in the tree represents a type in the current policy for which there is a
transitive information flow to or from its parent node.

8 The kernel exploit from Brad Spengler is known but was not used (also see “SELinux hardening for
mmap_min_addr protections” [Ref. 16]).

Page 150

http://eparis.livejournal.com/891.html
http://eparis.livejournal.com/891.html
http://eparis.livejournal.com/606.html

The SELinux Notebook - Sample Policy Source

Figure 5.8: Transitive Information Flow - Starting type : in_file_t showing the
‘to’ direction.

Note that only the node for unconfined_t has been shown.

The first entry is with the ‘To’ direction selected, and the second with the ‘From’
direction selected (this entry has been edited9 as it lists all objects that unconfined_t
is allowed to relabel i.e. all of the object classes with a relabel permission).

Information Flows TO in_file_t FROM unconfined_t:
Information flows to in_file_t from unconfined_t (find more flows)
Apol found the following number of information flows: 2

Flow 1 requires 3 steps(s).
 unconfined_t -> ext_gateway_packet_t -> ext_gateway_t -> in_file_t
 allow unconfined_t ext_gateway_packet_t : packet relabelto ;
 allow ext_gateway_t ext_gateway_packet_t : packet { send recv } ;
 allow ext_gateway_t in_file_t : file { write create getattr } ;

Flow 2 requires 2 steps(s).
 unconfined_t -> ext_gateway_t -> in_file_t
 allow ext_gateway_t unconfined_t : filesystem { getattr associate } ;
 allow ext_gateway_t unconfined_t : association recvfrom ;
 allow ext_gateway_t unconfined_t : chr_file { read write getattr } ;
 allow ext_gateway_t unconfined_t : dir search ;
 allow ext_gateway_t unconfined_t : fd use ;
 allow ext_gateway_t unconfined_t : file { read getattr execute } ;
 allow ext_gateway_t unconfined_t : lnk_file read ;
 allow ext_gateway_t unconfined_t : packet { send recv } ;
 allow ext_gateway_t in_file_t : file { write create getattr } ;

9 By selecting the ‘Use advanced filters’ check box and then ‘Advanced Filters’, it is possible to refine
the search, for example excluding all permission weights below 10 (that will get permissions such as
read, write and relabel).

Page 151

The SELinux Notebook - Sample Policy Source

Information Flows FROM in_file_t TO unconfined_t:
Information flows from in_file_t to unconfined_t (find more flows)
Apol found the following number of information flows: 2

Flow 1 requires 2 steps(s).
 in_file_t -> move_file_t -> unconfined_t
 allow move_file_t in_file_t : file { read unlink } ;
 allow move_file_t unconfined_t : fd use ;
 allow move_file_t unconfined_t : chr_file { read write getattr } ;

Flow 2 requires 3 steps(s).
 in_file_t -> move_file_t -> unconfined_t -> unconfined_t
 allow move_file_t in_file_t : file { read unlink } ;
 allow move_file_t unconfined_t : fd use ;
 allow move_file_t unconfined_t : chr_file { read write getattr } ;
 allow unconfined_t unconfined_t : process { fork transition sigchld sigkill
sigstop signull signal ptrace getsched setsched getsession getpgid setpgid getcap
setcap share getattr setexec setfscreate noatsecure siginh setrlimit rlimitinh
dyntransition setcurrent execmem execstack execheap setkeycreate setsockcreate } ;
.......
.......
.......
 allow unconfined_t unconfined_t : unix_stream_socket { ioctl read write
create getattr setattr lock relabelfrom relabelto append bind connect listen
accept getopt setopt shutdown recvfrom sendto recv_msg send_msg name_bind
connectto newconn acceptfrom } ;

Page 152

The SELinux Notebook - Sample Policy Source

6. Appendix B – NetLabel Module Support for
network_peer_controls

6.1 Introduction
This is an enhanced NetLabel module to enable a NetLabel netlabel_peer_t label
to be added to the network connection.

The previous NetLabel module used the standard F-12 Policy Capabilities10

network_peer_controls (set to ‘0’). This exercise will set the
network_peer_controls to ‘1’ by updating the base module with a policycap
statement, allowing the use of these new controls.

6.2 Configuration
The following steps are required to build the enhanced NetLabel module, it is assumed
that the NetLabel services have already been installed from the previous NetLabel
module exercise.

1. Ensure you are logged on as ‘root’ and SELinux is running in permissive mode
(setenforce 0) to perform the build process.

2. Edit the ./notebook-source/modular-base-policy/base.conf
file to remove the ‘#’ from the policycap statement as shown:

#
This policycap statement will be used in a netlabel module exercise
to show network_peer_controls. For now comment out:
policycap network_peer_controls;

3. Compile and link the base module so that the network_peer_controls
are enabled:

checkmodule -o base.mod base.conf

semodule_package -o base.pp -m base.mod -f base.fc -s seusers -u users_extra

semodule -s modular-test -b base.pp

4. The following command will return ‘1’ if the policy enabled the
network_peer_controls:

cat /selinx/policy_capabilities/network_peer_controls
1

5. Produce a netlabel_policycap.conf loadable module file with a text
editor containing the contents shown below:

module netlabel 2.0.0;

#
##
#
This Loadable Module will allow the netlabels to be added and checked
within the client / server applications that form part of the SECMARK

10 See the SELinux Filesystem section in Volume 1 - The Foundations.

Page 153

The SELinux Notebook - Sample Policy Source

test examples.
#
The following needs to happen to enable Netlabel to work as it is not
installed by default in F-12:
#
(1) Download and install netlabel_tools
#
(2) Install this loadable module.
#
(3) Run the following netlabelctl command: #
netlabelctl unlbl add interface:lo address:127.0.0.1 \
label:system_u:object_r:netlabel_peer_t
#
(4) Run netlabelctl -p unlbl list command to check all is okay.
#
(5) Run the secure and standard client/server that should now display
the netlabel_peer_t as the peer context.
#
Important note: The policycap network_peer_controls; statement must be
added to the base policy before the peer object can be
used, otherwise the tcp_socket object will be used
instead:
/selinux/policy_capabilities/network_peer_controls = 0 (use tcp_socket)#
/selinux/policy_capabilities/network_peer_controls = 1 (use peer)
#
##
#

require {
type ext_gateway_t, unconfined_t;
class peer { recv };
class netif { ingress egress };
class node { recvfrom sendto};
}

Use this to label the peer level:
type netlabel_peer_t;

These are used when /selinux/policy_capabilities/network_peer_controls = 1

These are for unconfined_t ports:
allow unconfined_t netlabel_peer_t : peer recv;
allow netlabel_peer_t unconfined_t : netif ingress;
allow netlabel_peer_t unconfined_t : node recvfrom;

These are for the external gateway port:
allow ext_gateway_t netlabel_peer_t : peer recv;
allow ext_gateway_t unconfined_t : netif egress;
allow ext_gateway_t unconfined_t : node sendto;

#
####################### START OPTIONAL SECTION ###########################
#
optional {
require {

This is defined in the int_gateway.conf module:
type int_gateway_t;

}
allow int_gateway_t netlabel_peer_t : peer recv;
allow int_gateway_t unconfined_t : netif egress;
allow int_gateway_t unconfined_t : node sendto;
}
#
######################## END OPTIONAL SECTION ###########################
#

6. Compile and link the new NetLabel module:

checkmodule -m netlabel_policycap.conf -o netlabel.mod

semodule_package -o netlabel.pp -m netlabel.mod

Page 154

The SELinux Notebook - Sample Policy Source

semodule -v -s modular-test -i netlabel.pp

8. Run the following command to add the netlabel_peer_t label as follows:

netlabelctl unlbl add interface:lo address:127.0.0.1 \
 label:system_u:object_r:netlabel_peer_t

9. Run enforcing mode:

setenforce 1

10. Run either the client / server or secure_client / secure_server applications as
shown in the SECMARK tests. There should now be a peer context displayed as
shown in the ‘With Peer Context (NetLabel)’ section of Figure 6.1.

Figure 6.1: Running the secure client / server – Once with no NetLabel and once
with NetLabel enabled.

Page 155

The SELinux Notebook - Sample Policy Source

7. Appendix C – Labeled IPSec Module Example

7.1 Introduction
This section shows a sample IPSec module and configuration files that have been built
to support the simple message filter. It is in two parts:

Manual Configuration – This shows the files required to configure IPSec
manually making all the entries in the SAD and SPD databases. Important note: The
encryption keys are pre-generated. If this type of configuration is to be used, then
generate new keys as described in the IPSec-HOWTO [Ref. 12].

Key Exchange Configuration – This shows the configuration files required for
racoon to manage the key exchange and security context. Unfortunately, racoon
core dumps on F-12 using the modular-test policy (but does work with Red
Hat targeted policy - The reason seems to be linked with using loopback to run
IPSec. When an MCS / MLS policy is used with loopback it works, however if
MCS or MLS is not configured it core-dumps).

Notes:

1. F-12 does not have IPSec tools installed as standard, therefore yum can be used
to install it as shown below:

yum install ipsec-tools

2. The IPSec configuration files have entries for the Internal Gateway
(int_gateway_t). If this module is not loaded, then the entries need to be
removed.

3. F-12 does not have IPSec services enabled for loopback by default, therefore the
following commands need to be run:

echo 0 > /proc/sys/net/ipv4/conf/lo/disable_xfrm
echo 0 > /proc/sys/net/ipv4/conf/lo/disable_policy

Be aware though that this re-configuration will only be valid until the next re-
boot.

7.2 Manual IPSec Configuration
The steps required to install the module and configure IPSec are as follows:

1. Ensure you are logged on as ‘root’ and SELinux is running in permissive mode
(setenforce 0) to perform the build process.

2. Produce a ipsec.conf loadable module file with a text editor containing the
contents shown below:

module ipsec 1.0.0;
#
##
#
This Loadable Module will allow Labeled IPSec to manage labeling for
the client / server applications that form part of the test examples

Page 156

http://www.ipsec-howto.org/

The SELinux Notebook - Sample Policy Source

in the SELinux Notebook.
#
##
#

require {
type ext_gateway_t, unconfined_t;
class association { setcontext polmatch sendto recvfrom };
}

This allows unconfined to set the SPD and SAD context entries:
allow unconfined_t ext_gateway_t : association { setcontext };

This allows the external gateway to work with Labeled IPSec:
allow ext_gateway_t self : association { setcontext polmatch sendto recvfrom
};

Allows Racoon running in unconfined_t to polmatch (in fact
racoon needs to polmatch all entries):
allow unconfined_t ext_gateway_t:association polmatch;

#
######### START OPTIONAL SECTION (for internal gateway) #############
#
optional {
 require {
 # This is defined in the int_gateway.conf module:
 type int_gateway_t;
 }
allow unconfined_t int_gateway_t:association { setcontext polmatch };
allow int_gateway_t self : association { setcontext polmatch sendto recvfrom
};

}
#
###################### END OPTIONAL SECTION #########################
#

3. Compile and link the new IPSec module:

checkmodule -m ipsec.conf -o ipsec.mod
semodule_package -o ipsec.pp -m ipsec.mod
semodule -v -s modular-test -i ipsec.pp

4. Create an IPSec configuration file (ipsec_manual_SA) that will generate
both the SAD and SPD database entries that allow IPSec to be configured
manually:

setkey -f configuration file entries for MANUAL SA configuration
#
If the Internal Gateway module (int_gateway.conf) is not loaded,
then the entries should be removed from this file.
#
Flush the SAD and SPD
flush;
spdflush;

#
########## Security Association Database entries #################
#
Important notes:
1) The security context (-ctx) entries MUST match
the actual running context of the process or it will fail to
match (therefore racoon is the best configuration option as
these are automatically exchanged).
2) If the manual configuration is used in a live environment,
then DO NOT use these encryption keys, generate your own.

Authentication Header info

Page 157

The SELinux Notebook - Sample Policy Source

AH SAs using 128 bit long keys
add 127.0.0.1 127.0.0.1 ah 0x200
-ctx 1 1 "user_u:message_filter_r:ext_gateway_t"
-A hmac-md5 0xc0291ff014dccdd03874d9e8e4cdf3e6;

add 127.0.0.1 127.0.0.1 ah 0x250
-ctx 1 1 "user_u:message_filter_r:int_gateway_t"
-A hmac-md5 0xc0291ff014dccdd03874d9e8e4cdf3e6;

add 127.0.0.1 127.0.0.1 ah 0x300
-ctx 1 1 "user_u:unconfined_r:unconfined_t"
-A hmac-md5 0x96358c90783bbfa3d7b196ceabe0536b;
#
Enpapsulated Security Payload info
The -ctx context MUST be exact else get "connect: No such process"
message when running client:
ESP SAs using 192 bit long keys (168 + 24 parity)
add 127.0.0.1 127.0.0.1 esp 0x201
-ctx 1 1 "user_u:message_filter_r:ext_gateway_t"
-E 3des-cbc 0x7aeaca3f87d060a12f4a4487d5a5c3355920fae69a96c831;

add 127.0.0.1 127.0.0.1 esp 0x251
-ctx 1 1 "user_u:message_filter_r:int_gateway_t"
-E 3des-cbc 0x7aeaca3f87d060a12f4a4487d5a5c3355920fae69a96c831;

add 127.0.0.1 127.0.0.1 esp 0x301
-ctx 1 1 "user_u:unconfined_r:unconfined_t"
-E 3des-cbc 0xf6ddb555acfd9d77b03ea3843f2653255afe8eb5573965df;

#
########### Security Policy Database entries ##########################
#
Note that the only part of the security context matched against is
the 'type' (e.g. ext_gateway_t).

Security policies for external gateway:
spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "system_u:object_r:ext_gateway_t"
-P out ipsec esp/transport//require
ah/transport//require;

spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "system_u:object_r:ext_gateway_t"
-P in ipsec esp/transport//require
ah/transport//require;

Security policies for internal gateway:
spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "system_u:object_r:int_gateway_t"
-P out ipsec esp/transport//require
ah/transport//require;

spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "system_u:object_r:int_gateway_t"
-P in ipsec esp/transport//require
ah/transport//require;

Security policies for unconfined_t:
spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "system_u:object_r:unconfined_t"
-P out ipsec esp/transport//require
ah/transport//require;

spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "system_u:object_r:unconfined_t"
-P in ipsec esp/transport//require
ah/transport//require;

5. Activate the IPSec configuration by running setkey:

setkey –f ipsec_manual_SA

6. The configuration can be checked using the setkey commands as shown:

Page 158

The SELinux Notebook - Sample Policy Source

This command will list the Security Association
Database entries:

setkey –D

A list should follow that starts:
127.0.0.1 127.0.0.1
ah mode=transport spi=512(0x00000200) reqid=0(0x00000000)
A: hmac-md5 c0291ff0 14dccdd0 3874d9e8 e4cdf3e6
seq=0x00000000 replay=0 flags=0x00000000 state=mature
created: Sep 14 16:48:48 2009 current: Sep 14 16:49:10 2009
diff: 22(s)hard: 0(s) soft: 0(s)
last: hard: 0(s) soft: 0(s)
current: 0(bytes) hard: 0(bytes) soft: 0(bytes)
allocated: 0 hard: 0 soft: 0
security context doi: 1
security context algorithm: 1
security context length: 38
security context: user_u:message_filter_r:ext_gateway_t
sadb_seq=1 pid=3216 refcnt=0
.....
....

This command will list the Security Policy
Database entries:

setkey –DP

A list should follow that starts:
127.0.0.1[any] 127.0.0.1[any] tcp
out prio def ipsec
esp/transport//require
ah/transport//require
created: Sep 14 16:48:48 2009 lastused:
lifetime: 0(s) validtime: 0(s)
security context doi: 1
security context algorithm: 1
security context length: 32
security context: system_u:object_r:ext_gateway_t
spid=209 seq=1 pid=3219
refcnt=1
......
......

7. Because the IPSec service has not been enabled in F-12 for loopback, the
following commands need to be run:

The default for F-12 is that ipsec is disabled for
loopback. These commands will enable until a re-boot:

echo 0 > /proc/sys/net/ipv4/conf/lo/disable_xfrm
echo 0 > /proc/sys/net/ipv4/conf/lo/disable_policy

8. Run enforcing mode:

setenforce 1

9. Run either the client / server or secure_client / secure_server applications as
shown in the SECMARK tests. There should now be a peer context displayed as
shown in the ‘With Labeled IPSec Peer Context’ section of Figure 7.1.

Page 159

The SELinux Notebook - Sample Policy Source

Figure 7.1: Running the secure client / server – Once with no NetLabel, once with
NetLabel enabled and once with Labeled IPSec enabled (note that this label takes

precedence over the Fallback NetLabel).

7.3 Key Exchange IPSec Configuration
The configuration requirements are shown below, however as mentioned above the
racoon IKE daemon will core dump when using the simple policy configured as shown
in the Building a Basic Policy section. The steps required to install the module and
configure IPSec are as follows:

1. Perform steps 1, 2 and 3 as for the manual configuration to build the IPSec
module.

2. Create an IPSec configuration file (ipsec_racoon_SA) that will generate
only the SPD database entries. The SAD entries will be populated by racoon as
it exchanges the key and context information:

setkey -f configuration file entries for RACOON SA configuration
#
Flush the SAD and SPD
flush;
spdflush;

#
########### Security Policy Database entries ##########################
#
Security policies for external gateway:
spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "system_u:object_r:ext_gateway_t"
-P out ipsec esp/transport//require
ah/transport//require;

Page 160

The SELinux Notebook - Sample Policy Source

spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "system_u:object_r:ext_gateway_t"
-P in ipsec esp/transport//require
ah/transport//require;

Security policies for internal gateway:
spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "system_u:object_r:int_gateway_t"
-P out ipsec esp/transport//require
ah/transport//require;

spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "system_u:object_r:int_gateway_t"
-P in ipsec esp/transport//require
ah/transport//require;

Security policies for unconfined_t:
spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "system_u:object_r:unconfined_t"
-P out ipsec esp/transport//require
ah/transport//require;

spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "system_u:object_r:unconfined_t"
-P in ipsec esp/transport//require
ah/transport//require;

3. Activate the IPSec configuration by running setkey:

setkey –f ipsec_racoon_SA

4. The configuration can be checked using the setkey commands as shown:

This command will list the Security Association
Database entries:

setkey –D
No SAD entries.

Note that there should be NO SAD entries as racoon will
add these during the key exchange process.

This command will list the Security Policy
Database entries:

setkey –DP

A list should follow that starts:

5. Because the IPSec service has not been enabled in F-12 for loopback, the
following commands need to be run:

The default for F-12 is that ipsec is disabled for
loopback. These commands will enable until a re-boot:

echo 0 > /proc/sys/net/ipv4/conf/lo/disable_xfrm
echo 0 > /proc/sys/net/ipv4/conf/lo/disable_policy

Page 161

The SELinux Notebook - Sample Policy Source

6. Check the /etc/racoon/racoon.conf file. For F-12 its contents should
resemble that shown (the commented out sections have been removed). This
describes the key exchange as an anonymous exchange and therefore should
work with loopback. If the contents of the racoon.conf file are different,
then save the file and replace the contents with that below:

Racoon IKE daemon configuration file.
See 'man racoon.conf' for a description of the format and
entries.

path include "/etc/racoon";
path pre_shared_key "/etc/racoon/psk.txt";
path certificate "/etc/racoon/certs";
path script "/etc/racoon/scripts";

sainfo anonymous
{
lifetime time 1 hour ;
encryption_algorithm 3des, blowfish 448, rijndael ;
authentication_algorithm hmac_sha1, hmac_md5 ;
compression_algorithm deflate ;
}

7. Start a new virtual terminal session so that the racoon service can be run using
the command below (in the foreground with debug). If F-12 is being used with
the ipsec-tools tools, then the chances are racoon will core dump once the
client tries to contact the server.

racoon -Fd

8. Run enforcing mode:

setenforce 1

9. Run either the client / server or secure_client / secure_server applications as
shown in the SECMARK tests. There should be a peer context displayed as
shown in the ‘With Labeled IPSec Peer Context’ section of Figure 7.1 (however
racoon core dumps once the client tries to contact the server).

Page 162

The SELinux Notebook - Sample Policy Source

8. Appendix D – Implementing a Constraint

8.1 Introduction
The objective of this section is to show how a constraint can further limit access
permissions. The example given will to add a simple role constraint to the base policy
described in the Building the Base Module Policy section by adding the following:

constrain process transition (r1 == r2);

The impact of this constraint will be that when a transition is required, the role of the
source (or current) process must be the same as the role of the target process (or new
process being exec’ed).

While the majority of applications will load and execute when using the example base
policy, when attempting to load the external gateway module described in the Building
the SECMARK Test Loadable Module section, the result will be:

Ensure enforcement mode:
setenforce 1

Run the external gateway:
secure_server 9999

The following will be displayed with the constraint enforced:
bash: /usr/local/bin/secure_server: Permission denied

This is because the roles are not equal as the source process is the shell running with
unconfined_r and the external gateway with message_filter_r.

8.2 Configuration
The following steps are required to add the constraint to the base policy and test the
results:

1. Ensure you are logged on as ‘root’ and SELinux is running in permissive
mode (setenforce 0) to perform the build process.

2. Edit the ./notebook-source/modular-base-policy/base.conf
file to remove the ‘#’ from the constrain statement as shown:

#
This role constraint statement will be used to show limiting
a role transition in the external gateway. For now comment out:
#
constrain process transition (r1 == r2);

3. Compile and link the base module so that the constrain is enabled:

checkmodule -o base.mod base.conf

semodule_package -o base.pp -m base.mod -f base.fc -s seusers -u users_extra

semodule -s modular-test -b base.pp

4. Run enforcing mode:

Page 163

The SELinux Notebook - Sample Policy Source

setenforce 1

5. Run the external gateway as shown:

secure_server 9999

6. The following error should be displayed as the source and target process roles
are not equal:

bash: /usr/local/bin/secure_server: Permission denied

7. The role constraint (or any other if required) can be tried using different
operators such as !=, dom, domby or incomp as described in the
constrain statement section. Note the only other operator that will stop the
transition is ‘domby’, however this can be overcome by adding a further line to
the base policy to implement the role dominance rule as shown (but note that
this rule has been depreciated and checkmodule will issue a warning):

Add the dominance rule after the following statement:

allow unconfined_t self:x_application_data *;
#
dominance { role message_filter_r { role unconfined_r };}

8. Once testing has been completed it is recommended that the constrain and
dominance statements are removed and the policy rebuilt.

8.3 Reference Policy Constraints Information
The reference policy source has all the constraints listed in the
policy/constraints file and the MLS / MCS constraints listed in the
policy/mls and policy/mcs files respectively. All these constraints make
extensive use of attributes to hold the types to be managed.

For example in the policy/constraints file used by F-12, role changing for
transitions are managed by the constrain statement as shown:

#
SELinux process role change constraint:
#
constrain process { transition noatsecure siginh rlimitinh }
(

r1 == r2
or (t1 == can_change_process_role and t2 == process_user_target)

 or (t1 == cron_source_domain and t2 == cron_job_domain)
or (t1 == can_system_change and r2 == system_r)
or (t1 == process_uncond_exempt)

);

As can be seen the ‘r1 == r2’ is what was used in the external gateway example
above, however to allow other scenarios, attributes are used to ‘hold’ the types that can
change the constraint conclusion. For example, if the external gateway module was
written as a reference policy source module, then to allow the role change:

Page 164

The SELinux Notebook - Sample Policy Source

• The unconfined_t domain type could be added to the
can_change_process_role attribute and the ext_gateway_t domain
type added to the process_user_target attribute.

or

• The unconfined_t domain type could be added to the
process_uncond_exempt attribute.

Either of these would allow the transition to take place.

Page 165

The SELinux Notebook - Sample Policy Source

9. Appendix E - GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

0. Preamble
The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. Applicability and Definitions
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available
DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve
the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. Verbatim Copying
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. Copying In Quantity
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

Page 166

http://fsf.org/

The SELinux Notebook - Sample Policy Source

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. Modifications
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. Combining Documents
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include
in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections
Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. Collections Of Documents
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of that document.

7. Aggregation With Independent Works
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's
Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.

Page 167

The SELinux Notebook - Sample Policy Source

8. Translation
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. Termination
You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after
the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

10. Future Revisions Of This License
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies
to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. Relicensing
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible
for relicensing.

Page 168

	0. Notebook Information
	0.1 Copyright Information
	0.2 Revision History
	0.3 Acknowledgements
	0.4 Abbreviations
	0.5 Index

	1. The SELinux Notebook
	1.1 Introduction
	1.2 Volume 1 - The Foundations Overview
	1.3 Volume 2 - Sample Policy Source Overview
	1.3.1 Sample Policy Source Sections

	1.4 Relevant F-12 Packages

	2. Building a Basic Policy
	2.1 Introduction
	2.1.1 Overall Objectives
	2.1.2 Build Requirements
	2.1.3 The Test Policies

	2.2 Building The Policy Source Files
	2.2.1 Policy Source Files
	2.2.1.1 Problem Resolution
	2.2.1.2 Monolithic and Base Policy Source File
	2.2.1.3 file_contexts File
	2.2.1.4 default_contexts File
	2.2.1.5 seusers File
	2.2.1.6 dbus_contexts File
	2.2.1.7 x_contexts File

	2.3 Building the Monolithic Policy
	2.3.1 Checking the Build

	2.4 Building the Base Policy Module
	2.4.1 Checking the Base Policy Build

	3. Building the Message Filter Loadable Modules
	3.1 Overview of modules
	3.2 Building the SECMARK Test Loadable Module
	3.2.1 Testing the Module
	3.2.1.1 Running the Tests

	3.2.2 Points to Note
	3.2.2.1 Importance of Loading the iptables
	3.2.2.2 Running tests out of sequence

	3.3 Building the NetLabel Loadable Module
	3.4 Building the Remaining Message Filter Service
	3.4.1 Internal Gateway Loadable Policy Module
	3.4.2 File Move Application
	3.4.3 File Mover Loadable Policy Module
	3.4.4 Testing the Message Filter Build

	4. Experimenting with X-Windows
	4.1 Section Overview
	4.2 Overview of Modules and Applications
	4.2.1 The x_contexts Files and Supporting Loadable Module
	4.2.2 The Select - Paste Applications and Loadable Module
	4.2.2.1 Test Conclusions
	4.2.2.2 Calling the XSELinux Functions

	4.3 Building the X-Windows Select and Paste Examples
	4.3.1 Building the x_contexts Files and Loadable Module
	4.3.2 Building the X-select and X-paste Applications
	4.3.3 Building the X-select and X-paste Loadable Module
	4.3.4 Testing Derived Labels
	4.3.4.1 Derived Object Test Conclusions

	4.3.5 Testing Polyinstantiated Labels
	4.3.5.1 Polyinstantiated Object Test Conclusions

	4.4 Building the XSELinux Function Test Application

	5. Appendix A - Policy Investigation Tools
	5.1 Introduction
	5.2 Using audit2allow and audit2why
	5.3 Using seaudit and setroubleshoot
	5.4 Using sediffx
	5.5 Using sechecker
	5.5.1 Testing the Policy
	5.5.2 The Results

	5.6 Using apol
	5.6.1 General Information
	5.6.2 Type Enforcement Rules
	5.6.3 Direct Relabel
	5.6.3.1 apol Direct Relabel Analysis

	5.6.4 Transitive Information Flows
	5.6.4.1 apol Transitive Information Flows Analysis

	6. Appendix B – NetLabel Module Support for network_peer_controls
	6.1 Introduction
	6.2 Configuration

	7. Appendix C – Labeled IPSec Module Example
	7.1 Introduction
	7.2 Manual IPSec Configuration
	7.3 Key Exchange IPSec Configuration

	8. Appendix D – Implementing a Constraint
	8.1 Introduction
	8.2 Configuration
	8.3 Reference Policy Constraints Information

	9. Appendix E - GNU Free Documentation License

