Foundations of Machine Learning, Second Edition

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms.

**Tag(s):**
Machine Learning

**Publication date**: 25 Dec 2018

**ISBN-10**:
0262039400

**ISBN-13**:
9780262039406

**Paperback**:
504 pages

**Views**: 1,030

**Type**: Textbook

**Publisher**:
The MIT Press

**License**:
The MIT License (MIT)

**Post time**: 05 Feb 2021 12:00:00

Foundations of Machine Learning, Second Edition

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

Click**here** to read the full license.

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

Click

From the Book Description:

Related Resources:

Mehryar Mohri wrote:This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics.

Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review.

Related Resources:

Tweet

About The Author(s)

Afshin is a research scientist at Google Research NY, where he specializes in designing and applying machine learning algorithms. He received his BS in Electrical Engineering and Computer Science from UC Berkeley, his PhD in Computer Science from the Courant Institute at NYU with advisor Mehryar Mohri and was a post-doc at UC Berkeley in Peter Bartlett's group.

Ameet Talwalkar is an assistant professor in the Machine Learning Department at CMU, and also co-founder and Chief Scientist at Determined AI. His interests are in the field of statistical machine learning. His current work is motivated by the goal of democratizing machine learning, with a focus on topics related to automation, fairness, interpretability, and federated learning.

Book Categories

Computer Science
Introduction to Computer Science
Introduction to Computer Programming
Algorithms and Data Structures
Artificial Intelligence
Computer Vision
Machine Learning
Neural Networks
Game Development and Multimedia
Data Communication and Networks
Coding Theory
Computer Security
Information Security
Cryptography
Information Theory
Computer Organization and Architecture
Operating Systems
Image Processing
Parallel Computing
Concurrent Programming
Relational Database
Document-oriented Database
Data Mining
Big Data
Data Science
Digital Libraries
Compiler Design and Construction
Functional Programming
Logic Programming
Object Oriented Programming
Formal Methods
Software Engineering
Agile Software Development
Information Systems
Geographic Information System (GIS)

Mathematics
Mathematics
Algebra
Abstract Algebra
Linear Algebra
Number Theory
Numerical Methods
Precalculus
Calculus
Differential Equations
Category Theory
Proofs
Discrete Mathematics
Theory of Computation
Graph Theory
Real Analysis
Complex Analysis
Probability
Statistics
Game Theory
Queueing Theory
Operations Research
Computer Aided Mathematics

Supporting Fields
Web Design and Development
Mobile App Design and Development
System Administration
Cloud Computing
Electric Circuits
Embedded System
Signal Processing
Integration and Automation
Network Science
Project Management

Operating System
Programming/Scripting
Ada
Assembly
C / C++
Common Lisp
Forth
Java
JavaScript
Lua
Microsoft .NET
Rexx
Perl
PHP
Python
R
Rebol
Ruby
Scheme
Tcl/Tk

Miscellaneous
Sponsors