Complexity Theory

These set of introductory notes give the broad picture of modern complexity theory, define the basic complexity classes and give some examples of each complexity class.

**Tag(s):**
Theory of Computation

**Publication date**: 06 Dec 1999

**ISBN-10**:
n/a

**ISBN-13**:
n/a

**Paperback**:
130 pages

**Views**: 16,376

**Type**: N/A

**Publisher**:
n/a

**License**:
n/a

**Post time**: 21 Mar 2007 07:28:00

Complexity Theory

These set of introductory notes give the broad picture of modern complexity theory, define the basic complexity classes and give some examples of each complexity class.

From the Preface:

The present set of notes have grown out of a set of courses I have given at the Royal Institute of Technology. The courses have been given at an introductory graduate level, but also interested undergraduates have followed the courses.

The main idea of the course has been to give the broad picture of modern complexity theory. To define the basic complexity classes, give some examples of each complexity class and to prove the most standard relations. The set of notes does not contain the amount of detail wanted from a text book. I have taken the liberty of skipping many boring details and tried to emphasize the ideas involved in the proofs. Probably in many places more details would be helpful and I would he grateful for hints on where this is the case.

Most of the notes are at a fairly introductory level but some of the section contain more advanced material. This is in particular true for the section on pseudorandom number generators and the proof that IP = PSPACE. Anyone getting stuck in these parts of the notes should not be disappointed.

The present set of notes have grown out of a set of courses I have given at the Royal Institute of Technology. The courses have been given at an introductory graduate level, but also interested undergraduates have followed the courses.

The main idea of the course has been to give the broad picture of modern complexity theory. To define the basic complexity classes, give some examples of each complexity class and to prove the most standard relations. The set of notes does not contain the amount of detail wanted from a text book. I have taken the liberty of skipping many boring details and tried to emphasize the ideas involved in the proofs. Probably in many places more details would be helpful and I would he grateful for hints on where this is the case.

Most of the notes are at a fairly introductory level but some of the section contain more advanced material. This is in particular true for the section on pseudorandom number generators and the proof that IP = PSPACE. Anyone getting stuck in these parts of the notes should not be disappointed.

Tweet

About The Author(s)

No information is available for this author.

Book Categories

Computer Science
Introduction to Computer Science
Introduction to Computer Programming
Algorithms and Data Structures
Artificial Intelligence
Computer Vision
Machine Learning
Neural Networks
Game Development and Multimedia
Data Communication and Networks
Coding Theory
Computer Security
Information Security
Cryptography
Information Theory
Computer Organization and Architecture
Operating Systems
Image Processing
Parallel Computing
Concurrent Programming
Relational Database
Document-oriented Database
Data Mining
Big Data
Data Science
Digital Libraries
Compiler Design and Construction
Functional Programming
Logic Programming
Object Oriented Programming
Formal Methods
Software Engineering
Agile Software Development
Information Systems
Geographic Information System (GIS)

Mathematics
Mathematics
Algebra
Abstract Algebra
Linear Algebra
Number Theory
Numerical Methods
Precalculus
Calculus
Differential Equations
Category Theory
Proofs
Discrete Mathematics
Theory of Computation
Graph Theory
Real Analysis
Complex Analysis
Probability
Statistics
Game Theory
Queueing Theory
Operations Research
Computer Aided Mathematics

Supporting Fields
Web Design and Development
Mobile App Design and Development
System Administration
Cloud Computing
Electric Circuits
Embedded System
Signal Processing
Integration and Automation
Network Science
Project Management

Operating System
Programming/Scripting
Ada
Assembly
C / C++
Common Lisp
Forth
Java
JavaScript
Lua
Microsoft .NET
Rexx
Perl
PHP
Python
R
Rebol
Ruby
Scheme
Tcl/Tk

Miscellaneous
Sponsors