Convex Optimization

This book helps the reader develop a working knowledge of convex optimization, i.e. to develop the skills and background needed to recognize, formulate, and solve convex optimization problems.

**Tag(s):**
Artificial Intelligence

**Publication date**: 01 Mar 2004

**ISBN-10**:
0521833787

**ISBN-13**:
0521833787

**Paperback**:
730 pages

**Views**: 15,728

Convex Optimization

This book helps the reader develop a working knowledge of convex optimization, i.e. to develop the skills and background needed to recognize, formulate, and solve convex optimization problems.

Terms and Conditions:

Book Excerpts:

This book is about convex optimization, a special class of mathematical optimization problems, which includes least-squares and linear programming problems. It is well known that least-squares and linear programming problems have a fairly complete theory, arise in a variety of applications, and can he solved numerically very efficiently. The basic point of this book is that the same can be said for the larger class of convex optimization problems.

The book's main goal is to help the reader develop a working knowledge of convex optimization, i.e., to develop the skills and background needed to recognize, formulate, and solve convex optimization problems.

There are several books on linear programming, and general nonlinear programming, that focus on problem formulation, modeling, and applications. Several other books cover the theory of convex optimization or interior-point methods and their complexity analysis. This book is meant to be something in between, a book on general convex optimization that focuses on problem formulation and modeling.

Intended Audience:

This book is meant for the researcher, scientist, or engineer who uses mathematical optimization. or more generally, computational mathematics. This includes, naturally, those working directly in optimization and operations research, and also many others who use optimization, in fields like computer science, economics, finance, statistics, data mining, and many fields of science and engineering. The book's primary focus is on the latter group, the potential users of convex optimization, and not the (less numerous) experts in the field of convex optimization.

The only background required of the reader is a good knowledge of advanced calculus and linear algebra. If the reader has seen basic mathematical analysis (e.g.. norms, convergence, elementary topology), and basic probability theory, he or she should he able to follow every argument and discussion in the book. Hopefully that readers who have not seen analysis and probability, however, can still get all of the essential ideas and important points. Prior exposure to numerical computing or optimization is not needed, since this book has all of the needed material from these areas in the text or appendices.

Review(s):

Amazon.com

:) "I think this book is a really good compromise between theory and practice: it can please the more mathematics-oriented with proofs, definitions, and bibliography; as well as the more application-oriented with examples, implementations, and heuristics."

:) "The book excels in readability and style. A perfect balance on the theoretical and practical aspets of the convex optimization."

Stephen Boyd wrote:Copyright in this book is held by Cambridge University Press, who have kindly agreed to allow us to keep the book available on the web.

Book Excerpts:

This book is about convex optimization, a special class of mathematical optimization problems, which includes least-squares and linear programming problems. It is well known that least-squares and linear programming problems have a fairly complete theory, arise in a variety of applications, and can he solved numerically very efficiently. The basic point of this book is that the same can be said for the larger class of convex optimization problems.

The book's main goal is to help the reader develop a working knowledge of convex optimization, i.e., to develop the skills and background needed to recognize, formulate, and solve convex optimization problems.

There are several books on linear programming, and general nonlinear programming, that focus on problem formulation, modeling, and applications. Several other books cover the theory of convex optimization or interior-point methods and their complexity analysis. This book is meant to be something in between, a book on general convex optimization that focuses on problem formulation and modeling.

Intended Audience:

This book is meant for the researcher, scientist, or engineer who uses mathematical optimization. or more generally, computational mathematics. This includes, naturally, those working directly in optimization and operations research, and also many others who use optimization, in fields like computer science, economics, finance, statistics, data mining, and many fields of science and engineering. The book's primary focus is on the latter group, the potential users of convex optimization, and not the (less numerous) experts in the field of convex optimization.

The only background required of the reader is a good knowledge of advanced calculus and linear algebra. If the reader has seen basic mathematical analysis (e.g.. norms, convergence, elementary topology), and basic probability theory, he or she should he able to follow every argument and discussion in the book. Hopefully that readers who have not seen analysis and probability, however, can still get all of the essential ideas and important points. Prior exposure to numerical computing or optimization is not needed, since this book has all of the needed material from these areas in the text or appendices.

Review(s):

Amazon.com

:) "I think this book is a really good compromise between theory and practice: it can please the more mathematics-oriented with proofs, definitions, and bibliography; as well as the more application-oriented with examples, implementations, and heuristics."

:) "The book excels in readability and style. A perfect balance on the theoretical and practical aspets of the convex optimization."

Tweet

About The Author(s)

Stephen P. Boyd is the Samsung Professor of Engineering, and Professor of Electrical Engineering in the Information Systems Laboratory at Stanford University. He has courtesy appointments in the Department of Management Science and Engineering and the Department of Computer Science, and is member of the Institute for Computational and Mathematical Engineering. His current research focus is on convex optimization applications in control, signal processing, finance, and circuit design.

Lieven Vandenberghe is Professor of Electrical Engineering and Mathematics at the University of California, Los Angeles.

Book Categories

Computer Science
44
Introduction to Computer Science
41
Algorithms and Data Structures
23
Object Oriented Programming
21
Theory of Computation
19
Formal Methods
19
Functional Programming
10
Logic Programming
22
Artificial Intelligence
22
Computer Vision
10
Big Data
3
Neural Networks
19
Compiler Design and Construction
1
Computer Security
15
Computer Organization and Architecture
9
Parallel Computing
3
Concurrent Programming
22
Operating Systems
22
Data Communication and Networks
31
Information Security
6
Information Theory
23
Digital Libraries
13
Information Systems
61
Software Engineering
17
Game Development and Multimedia
10
Data Mining
21
Machine Learning

Mathematics
66
Mathematics
2
Precalculus
9
Algebra
6
Calculus
5
Category Theory
25
Linear Algebra
16
Computer Aided Mathematics
6
Proofs
16
Discrete Mathematics
6
Numerical Methods
3
Number Theory
10
Graph Theory
12
Operations Research
1
Complex Analysis
5
Queueing Theory
32
Statistics
10
Probability

Supporting Fields
9
Electric Circuits
22
Signal Processing
13
Web Design and Development
2
Document-oriented Database
9
Relational Database
1
Cloud Computing
1
Network Science

Operating System
Programming/Scripting
6
Ada
12
Assembly
35
C / C++
8
Common Lisp
2
Forth
34
Java
11
JavaScript
1
Lua
15
Microsoft .NET
1
Rexx
12
Perl
5
PHP
58
Python
1
Rebol
13
Ruby
2
Scheme
3
Tcl/Tk

Miscellaneous