Graph Theory With Applications

An introduction to graph theory. Presents the basic material, together with a wide variety of applications, both to other branches of mathematics and to real-world problems. Several good algorithms are included and their efficiencies are analysed.

**Tag(s):**
Graph Theory

**Publication date**: 31 Dec 1976

**ISBN-10**:
0333226941

**ISBN-13**:
9780333226940

**Paperback**:
270 pages

**Views**: 27,195

Graph Theory With Applications

An introduction to graph theory. Presents the basic material, together with a wide variety of applications, both to other branches of mathematics and to real-world problems. Several good algorithms are included and their efficiencies are analysed.

Terms and Conditions:

From the Preface:

This book is intended as an introduction to graph theory. Our aim has been to present what we consider to be the basic material, together with a wide variety of applications, both to other branches of mathematics and to real-world problems. Included are simple new proofs of theorems of Brooks, Chvatal, Tutte and Vizing. The applications have been carefully selected, and are treated in some depth. We have chosen to omit all so-called "applications" that employ just the language of graphs and no theory. The applications appearing at the end of each chapter actually make use of theory developed earlier in the same chapter. We have also stressed the importance of efficient methods of solving problems. Several good algorithms are included and their efficiencies are analysed. We do not, however, go into the computer implementation of these algorithms.

The exercises at the end of each section are of varying difficulty. The harder ones are starred (*) and, for these, hints are provided in appendix I. In some exercises, new definitions are introduced. The reader is recommended to acquaint himself with these definitions. Other exercises, whose numbers are indicated by bold type, are used in subsequent sections; these should all be attempted.

Appendix II consists of a table in which basic properties of four graphs are listed. When new definitions are introduced, the reader may find it helpful to check his understanding by referring to this table. Appendix III includes a selection of interesting graphs with special properties. These may prove to be useful in testing new conjectures. In appendix IV, we collect together a number of unsolved problems, some known to be very difficult, and others more hopeful. Suggestions for further reading are given in appendix V.

J. A. Bondy wrote:The text Graph Theory with Applications by U.S.R. Murty and myself has been out of print for some time. Professor Murty and I are currently preparing a new introduction to the subject, with the tentative title Graph Theory. In the meantime, we are making available pdf files of Graph Theory with Applications. They are strictly for personal use.

From the Preface:

This book is intended as an introduction to graph theory. Our aim has been to present what we consider to be the basic material, together with a wide variety of applications, both to other branches of mathematics and to real-world problems. Included are simple new proofs of theorems of Brooks, Chvatal, Tutte and Vizing. The applications have been carefully selected, and are treated in some depth. We have chosen to omit all so-called "applications" that employ just the language of graphs and no theory. The applications appearing at the end of each chapter actually make use of theory developed earlier in the same chapter. We have also stressed the importance of efficient methods of solving problems. Several good algorithms are included and their efficiencies are analysed. We do not, however, go into the computer implementation of these algorithms.

The exercises at the end of each section are of varying difficulty. The harder ones are starred (*) and, for these, hints are provided in appendix I. In some exercises, new definitions are introduced. The reader is recommended to acquaint himself with these definitions. Other exercises, whose numbers are indicated by bold type, are used in subsequent sections; these should all be attempted.

Appendix II consists of a table in which basic properties of four graphs are listed. When new definitions are introduced, the reader may find it helpful to check his understanding by referring to this table. Appendix III includes a selection of interesting graphs with special properties. These may prove to be useful in testing new conjectures. In appendix IV, we collect together a number of unsolved problems, some known to be very difficult, and others more hopeful. Suggestions for further reading are given in appendix V.

Tweet

About The Author(s)

John Adrian Bondy, (Born 1944) a dual British and Canadian citizen, was a professor of graph theory at the University of Waterloo, in Canada. He is a faculty member of Université Lyon 1, France. Bondy is known for his work on Bondy–Chvátal theorem together with Václav Chvátal. His coauthors include Paul Erdős. Bondy received his Ph.D. in graph theory from University of Oxford in 1969. Bondy has served as a managing editor and co-editor-in-chief of the Journal of Combinatorial Theory, Series B.

Uppaluri Siva Ramachandra Murty or U. S. R. Murty (as he prefers to write his name), is a Professor Emeritus of the Department of Combinatorics and Optimization, University of Waterloo.U. S. R. Murty received his Ph.D. in 1967 from the Indian Statistical Institute, Calcutta, with a thesis on extremal graph theory. Murty is well known for his work in matroid theory and graph theory, and mainly for being a co-author with J. A. Bondy of a textbook on graph theory. Murty has served as a managing editor and co-editor-in-chief of the Journal of Combinatorial Theory, Series B.

Book Categories

Computer Science
15
Introduction to Computer Science
33
Introduction to Computer Programming
52
Algorithms and Data Structures
24
Artificial Intelligence
24
Computer Vision
28
Machine Learning
6
Neural Networks
22
Game Development and Multimedia
25
Data Communication and Networks
5
Coding Theory
15
Computer Security
8
Information Security
35
Cryptography
3
Information Theory
17
Computer Organization and Architecture
22
Operating Systems
1
Image Processing
10
Parallel Computing
4
Concurrent Programming
19
Relational Database
3
Document-oriented Database
13
Data Mining
16
Big Data
17
Data Science
23
Digital Libraries
22
Compiler Design and Construction
25
Functional Programming
11
Logic Programming
26
Object Oriented Programming
21
Formal Methods
70
Software Engineering
3
Agile Software Development
7
Information Systems
5
Geographic Information System (GIS)

Mathematics
68
Mathematics
13
Algebra
28
Linear Algebra
3
Number Theory
8
Numerical Methods
2
Precalculus
10
Calculus
5
Category Theory
10
Proofs
19
Discrete Mathematics
24
Theory of Computation
14
Graph Theory
1
Complex Analysis
13
Probability
43
Statistics
7
Game Theory
5
Queueing Theory
13
Operations Research
16
Computer Aided Mathematics

Supporting Fields
19
Web Design and Development
1
Mobile App Design and Development
29
System Administration
2
Cloud Computing
9
Electric Circuits
6
Embedded System
26
Signal Processing
4
Network Science
3
Project Management

Operating System
Programming/Scripting
6
Ada
13
Assembly
34
C / C++
8
Common Lisp
2
Forth
36
Java
12
JavaScript
1
Lua
15
Microsoft .NET
1
Rexx
12
Perl
6
PHP
66
Python
12
R
1
Rebol
13
Ruby
2
Scheme
3
Tcl/Tk

Miscellaneous