Mathematics for Algorithm and Systems Analysis

The second part of the two series of book, used to teach discrete mathematics that includes Boolean arithmetic, combinatorics, elementary logic, induction, graph theory and finite probability in the University of California, San Diego.

**Tag(s):**
Discrete Mathematics

**Publication date**: 01 Jul 2005

**ISBN-10**:
0486442500

**ISBN-13**:
n/a

**Paperback**:
248 pages

**Views**: 19,209

Mathematics for Algorithm and Systems Analysis

The second part of the two series of book, used to teach discrete mathematics that includes Boolean arithmetic, combinatorics, elementary logic, induction, graph theory and finite probability in the University of California, San Diego.

Book Excerpts:

Discrete mathematics is an essential tool in almost all subareas of computer science. Interesting and challenging problems in discrete mathematics arise in programming languages, computer architecture, networking, distributed systems, database systems, AI, theoretical computer science, and other areas.

This textbook is the second part of the two series of book, used to teach two-quarter course sequence in discrete mathematics that includes Boolean arithmetic, combinatorics, elementary logic, induction, graph theory and finite probability in the University of California, San Diego (USCD). These courses are core undergraduate requirements for majors in Computer Science, Computer Engineering, and Mathematics-Computer Science.

This text, Mathematics for Algorithm and System Analysis, was developed for the second quarter and the other text, A Short Course in Discrete Mathematics was developed for the first quarter. With appropriate students, this text could be used without the first.

This book consists of four units of study (Counting and Listing -- CL; Functions -- Fn; Decision Trees and Recursion -- DT; and Basic Concepts of Graph Theory -- GT), each divided into four sections. Each section contains a representative selection of problems. These vary from basic to more difficult, including proofs for study by mathematics students or honors students. The first three sections in units CL and Fn are primarily a review of material in A Short Course in Discrete Mathematics needed for this course.

The review questions. 'Multiple Choice Questions for Review' appear at the end of each unit. The explanatory material in this book is directed towards giving students the mathematical language and sophistication to recognize and articulate the ideas behind these questions and to answer questions that are similar in concept and difficulty. Many variations of these questions have been successfully worked on exams by most beginning students using this book at UCSD.

Intended Audience:

Students who master the ideas and mathematical language needed to understand these review questions gain the ability to formulate, in the neutral language of mathematics, problems that arise in various applications of computer science. This skill greatly facilitates their ability to discuss problems in discrete mathematics with other computer scientists and with mathematicians.

Discrete mathematics is an essential tool in almost all subareas of computer science. Interesting and challenging problems in discrete mathematics arise in programming languages, computer architecture, networking, distributed systems, database systems, AI, theoretical computer science, and other areas.

This textbook is the second part of the two series of book, used to teach two-quarter course sequence in discrete mathematics that includes Boolean arithmetic, combinatorics, elementary logic, induction, graph theory and finite probability in the University of California, San Diego (USCD). These courses are core undergraduate requirements for majors in Computer Science, Computer Engineering, and Mathematics-Computer Science.

This text, Mathematics for Algorithm and System Analysis, was developed for the second quarter and the other text, A Short Course in Discrete Mathematics was developed for the first quarter. With appropriate students, this text could be used without the first.

This book consists of four units of study (Counting and Listing -- CL; Functions -- Fn; Decision Trees and Recursion -- DT; and Basic Concepts of Graph Theory -- GT), each divided into four sections. Each section contains a representative selection of problems. These vary from basic to more difficult, including proofs for study by mathematics students or honors students. The first three sections in units CL and Fn are primarily a review of material in A Short Course in Discrete Mathematics needed for this course.

The review questions. 'Multiple Choice Questions for Review' appear at the end of each unit. The explanatory material in this book is directed towards giving students the mathematical language and sophistication to recognize and articulate the ideas behind these questions and to answer questions that are similar in concept and difficulty. Many variations of these questions have been successfully worked on exams by most beginning students using this book at UCSD.

Intended Audience:

Students who master the ideas and mathematical language needed to understand these review questions gain the ability to formulate, in the neutral language of mathematics, problems that arise in various applications of computer science. This skill greatly facilitates their ability to discuss problems in discrete mathematics with other computer scientists and with mathematicians.

Tweet

About The Author(s)

Edward A. Bender is a Professor Emeritus of Mathematics in the Department of Mathematics at the UC San Diego. He received his Ph.D. in Mathematics at California Institute of Technology in 1966.

No information is available for this author.

Book Categories

Computer Science
37
Introduction to Computer Science
40
Algorithms and Data Structures
18
Object Oriented Programming
21
Theory of Computation
18
Formal Methods
17
Functional Programming
10
Logic Programming
22
Artificial Intelligence
21
Computer Vision
7
Big Data
3
Neural Networks
18
Compiler Design and Construction
16
Computer Organization and Architecture
8
Parallel Computing
3
Concurrent Programming
22
Operating Systems
20
Data Communication and Networks
24
Information Security
6
Information Theory
23
Digital Libraries
14
Information Systems
61
Software Engineering
17
Game Development and Multimedia
9
Data Mining
19
Machine Learning

Mathematics
63
Mathematics
9
Algebra
5
Calculus
5
Category Theory
23
Linear Algebra
15
Computer Aided Mathematics
2
Proofs
10
Discrete Mathematics
6
Numerical Methods
2
Number Theory
7
Graph Theory
13
Operations Research
20
Statistics
3
Probability

Supporting Fields
Operating System
Programming/Scripting
6
Ada
12
Assembly
31
C / C++
8
Common Lisp
2
Forth
33
Java
8
JavaScript
1
Lua
13
Microsoft .NET
11
Perl
5
PHP
52
Python
1
Rebol
9
Ruby
1
Scheme
3
Tcl/Tk

Miscellaneous