Notes for the Course of Algorithms

Deal with how to design good algorithms, which is about the mathematical theory behind the design of good programs.

**Tag(s):**
Algorithms and Data Structures

**Publication date**: 31 Dec 1998

**ISBN-10**:
n/a

**ISBN-13**:
n/a

**Paperback**:
n/a

**Views**: 215,226

**Type**: N/A

**Publisher**:
n/a

**License**:
n/a

**Post time**: 18 Feb 2007 07:20:34

Notes for the Course of Algorithms

Deal with how to design good algorithms, which is about the mathematical theory behind the design of good programs.

Terms and Conditions:

Document Summary:

What is algorithm design? An algorithm was defined to be any well-defined computational procedure that takes some values as input and produces some values as output. Like a cooking recipe, an algorithm provides a step-by-step method for solving a computational problem.

A good understanding of algorithms is essential for a good understanding of the most basic element of computer science: programming. Unlike a program, an algorithm is a mathematical entity, which is independent of a specific programming language, machine, or compiler. Thus, in some sense, algorithm design is all about the mathematical theory behind the design of good programs.

One of the elements that this course focuses on is to try to study algorithms as pure mathematical objects, and so ignore issues such as programming language, machine, and operating system. This has the advantage of clearing away the messy details that affect implementation. But these details may be very important.

Document Organization:

The notes will consist of three major sections. The first is on the mathematical tools necessary for the analysis of algorithms. This will focus on asymptotics, summations, recurrences. The second element will deal with one particularly important algorithmic problem: sorting a list of numbers. The notes will show a number of different strategies for sorting, and use this problem as a case study in different techniques for designing and analyzing algorithms. The final third of the course will deal with a collection of various algorithmic problems and solution techniques. Finally the notes will close with a very brief introduction to the theory of NP-completeness. NP-complete problem are those for which no efficient algorithms are known, but no one knows for sure whether efficient solutions might exist.

Dave Mount wrote:Copyright, David M. Mount, 1998, Dept. of Computer Science, University of Maryland, College Park, MD, 20742. These lecture notes were prepared by David Mount for the course CMSC 251, Algorithms, at the University of Maryland, College Park. Permission to use, copy, modify, and distribute these notes for educational purposes and without fee is hereby granted, provided that this copyright notice appear in all copies.

Document Summary:

What is algorithm design? An algorithm was defined to be any well-defined computational procedure that takes some values as input and produces some values as output. Like a cooking recipe, an algorithm provides a step-by-step method for solving a computational problem.

A good understanding of algorithms is essential for a good understanding of the most basic element of computer science: programming. Unlike a program, an algorithm is a mathematical entity, which is independent of a specific programming language, machine, or compiler. Thus, in some sense, algorithm design is all about the mathematical theory behind the design of good programs.

One of the elements that this course focuses on is to try to study algorithms as pure mathematical objects, and so ignore issues such as programming language, machine, and operating system. This has the advantage of clearing away the messy details that affect implementation. But these details may be very important.

Document Organization:

The notes will consist of three major sections. The first is on the mathematical tools necessary for the analysis of algorithms. This will focus on asymptotics, summations, recurrences. The second element will deal with one particularly important algorithmic problem: sorting a list of numbers. The notes will show a number of different strategies for sorting, and use this problem as a case study in different techniques for designing and analyzing algorithms. The final third of the course will deal with a collection of various algorithmic problems and solution techniques. Finally the notes will close with a very brief introduction to the theory of NP-completeness. NP-complete problem are those for which no efficient algorithms are known, but no one knows for sure whether efficient solutions might exist.

Tweet

About The Author(s)

David Mount is a professor in the Department of Computer Science and UMIACS. He is a member of the Algorithms and Theory Group at the University of Maryland. He does research on the design, analysis, and implementation of data structures and algorithms for geometric problems, particularly problems with applications in areas such as image processing, pattern recognition, information retrieval, and computer graphics.

Book Categories

Computer Science
15
Introduction to Computer Science
32
Introduction to Computer Programming
52
Algorithms and Data Structures
24
Artificial Intelligence
24
Computer Vision
29
Machine Learning
6
Neural Networks
22
Game Development and Multimedia
25
Data Communication and Networks
5
Coding Theory
16
Computer Security
8
Information Security
34
Cryptography
3
Information Theory
17
Computer Organization and Architecture
22
Operating Systems
1
Image Processing
10
Parallel Computing
4
Concurrent Programming
22
Relational Database
3
Document-oriented Database
13
Data Mining
16
Big Data
17
Data Science
23
Digital Libraries
22
Compiler Design and Construction
26
Functional Programming
11
Logic Programming
26
Object Oriented Programming
21
Formal Methods
69
Software Engineering
3
Agile Software Development
7
Information Systems
5
Geographic Information System (GIS)

Mathematics
67
Mathematics
14
Algebra
1
Abstract Algebra
27
Linear Algebra
3
Number Theory
8
Numerical Methods
2
Precalculus
10
Calculus
3
Differential Equations
5
Category Theory
10
Proofs
19
Discrete Mathematics
24
Theory of Computation
14
Graph Theory
2
Real Analysis
1
Complex Analysis
14
Probability
45
Statistics
7
Game Theory
5
Queueing Theory
13
Operations Research
16
Computer Aided Mathematics

Supporting Fields
21
Web Design and Development
1
Mobile App Design and Development
28
System Administration
2
Cloud Computing
10
Electric Circuits
6
Embedded System
26
Signal Processing
4
Network Science
3
Project Management

Operating System
Programming/Scripting
6
Ada
13
Assembly
34
C / C++
8
Common Lisp
2
Forth
35
Java
13
JavaScript
1
Lua
15
Microsoft .NET
1
Rexx
12
Perl
6
PHP
68
Python
12
R
1
Rebol
13
Ruby
2
Scheme
3
Tcl/Tk

Miscellaneous